Methyl radicals produced by pyrolysis at various temperatures have been photoionized by photons in a 1.6‐Å bandwidth over the energy range 9.5‐16.5 eV with mass‐spectrometric detection. The curve of photoionization cross section for the parent ion shows that direct ionization predominates in the threshold region, and that the geometrical form of the positive ion in its ground state is very similar to that of the neutral radical. Hot bands and other vibrational features observed near threshold are only partly explained. The data are compared with absorption spectra and electron‐impact curves. The ionization efficiency curve for production of CH2+ from CH3 is measured at several pyrolysis temperatures and the threshold for 0°K is determined to be 15.09±0.03 eV. This yields the value 91.9±1.0 kcal/mole for the heat of formation of the CH2 free radical.

1.
G.
Herzberg
and
J.
Shoosmith
,
Can. J. Phys.
34
,
523
(
1956
).
2.
G.
Herzberg
,
Proc. Roy. Soc. (London)
A262
,
291
(
1961
).
3.
F. A.
Elder
,
C.
Giese
,
B.
Steiner
, and
M. G.
Inghram
,
J. Chem. Phys.
36
,
3292
(
1962
).
4.
C. E.
Melton
and
W. H.
Hamill
,
J. Chem. Phys.
41
,
3464
(
1964
).
5.
J. A.
Bell
,
Progr. Phys. Org. Chem.
2
,
1
(
1964
).
6.
A.
Langer
,
J. A.
Hippie
, and
D. P.
Stevenson
,
J. Chem. Phys.
22
,
1836
(
1954
).
7.
J.
Berkowitz
and
S.
Wexler
,
J. Chem. Phys.
37
,
1476
(
1962
).
8.
V. H.
Dibeler
,
M.
Krauss
,
R. M.
Reese
, and
F. N.
Harllee
,
J. Chem. Phys.
42
,
3791
(
1965
).
9.
J.
Berkowitz
and
W. A.
Chupka
,
J. Chem. Phys.
45
,
1287
(
1966
).
10.
W. A.
Chupka
and
J.
Berkowitz
,
J. Chem. Phys.
47
,
2921
(
1967
).
11.
C.
Lifshitz
and
W. A.
Chupka
,
J. Chem. Phys.
47
,
3439
(
1967
).
12.
R. E.
Huffman
,
J. C.
Larrabee
, and
Y.
Tanaka
,
Appl. Optics
4
,
1581
(
1965
).
13.
W. A. Chupka (unpublished).
14.
W. A.
Chupka
,
J. Chem. Phys.
30
,
191
(
1959
).
15.
B.
Steiner
,
C. F.
Giese
, and
M. G.
Inghram
,
J. Chem. Phys.
34
,
189
(
1961
).
16.
Because of the rotational barrier imposed by conservation of angular momentum, rotational energy may not be completely available for bond breaking. However, for dissociation into an ion and a neutral molecule or atom of polarizabibity α (and hence with the long‐range attractive potential of the form −e2α/2r4), consideration of the effective potential‐energy curve of
O.
Oldenberg
[
Z. Physik
56
,
563
(
1929
)] readily shows that for this case the major fraction of the rotational energy is effective in the dissociation. In general, the rotational energy effective in dissociation of an ion is a function of the polarizability of the neutral fragment and the rotational quantum number, and hence is a function of the temperature.
17.
JANAF Thermochemical Data Tables, (Clearinghouse for Federal Scientific and Technical Information, Springfield, Va., 1961), No. PB 168 370.
18.
This value is obtained from the photoionization threshold for production of CH3+ from CH4. These data (Ref. 13) were taken with a resolution width of 0.4 Å.
19.
C. E.
Melton
and
H. W.
Joy
,
J. Chem. Phys.
42
,
1986
(
1965
).
20.
R. E.
Kari
and
I. G.
Csizmadia
,
J. Chem. Phys.
46
,
1817
(
1967
).
21.
W. A. Chupka, J. Berkowitz, and D. J. Meschi, in Advances in Mass Spectrometry, R. M. Elliott, Ed. (Pergamon Press, Ltd., London, 1963), Vol. 2, pp. 99–109.
This content is only available via PDF.
You do not currently have access to this content.