Thirty infrared absorption lines in beryl between 1500 and 11 000 cm−1 are assigned to vibrations of two types of water and to CO2 all in the axial voids of the structure. The spectrum of Type‐I water arises from molecules which are capable of libration and are located between the silicate rings which make up the crystal. The spectrum of Type‐II water arises from molecules in the same sites, but with alkali ions nearby. These molecules are also capable of libration, but at a higher frequency. The Type‐I molecules have their C2 symmetry axes perpendicular to the crystal C6 axis, while the Type‐II molecules have their symmetry axes aligned parallel to the crystal C6 axis. The CO2 molecules are oriented with their long axes prependicular to the crystal C6 axis. Modification of the spectra by heat and hydrothermal treatments was not feasible and the identity of the alkali ions apparently does not influence Type‐II spectrum.

1.
W. L.
Bragg
and
J.
West
,
Proc. Roy. Soc. (London)
A111
,
691
(
1926
).
2.
N. V.
Belov
and
R. G.
Matveeva
,
Trudy Inst. Krist. Akad. Nauk. SSSR
6
,
69
(
1951
).
3.
V. G.
Feklichev
,
Geokhimia
No.
4
,
419
(
1963
).
4.
S. D. H. Buchi, “Studies on the Natural History of Beryl,” Ph.D. thesis, University of Michigan, 1961.
5.
V. V.
Bakakin
and
N. V.
Belov
,
Geokhimia
No.
5
,
420
(
1962
).
6.
A. H.
Pfund
,
J. Opt. Soc. Am.
35
,
611
(
1945
).
7.
B. D.
Saksena
,
Trans. Faraday Soc.
57
,
242
(
1961
).
8.
I. I.
Plyusnina
,
Geokhimia
2
,
158
(
1963
);
I. I.
Plyusnina
,
1
,
31
(
1964
).,
Geokhimiya
9.
I. I.
Plyusnina
and
G. B.
Bokii
,
Kristallografiya
,
3
,
752
(
1958
).
10.
F.
Matossi
and
O.
Bronder
,
Z. Physik
111
,
1
(
1938
).
11.
W.
Lyon
and
E. L.
Kinsey
,
Phys. Rev.
61
,
482
(
1942
).
12.
R. C. Linares, Am. Mineralogist (to be published).
13.
E. M.
Flanigan
,
D. W.
Breck
,
N. R.
Mumbach
, and
A. M.
Taylor
,
Am. Mineralogist
52
,
744
(
1967
);
E. M.
Flanigan
,
D. W.
Breck
,
N. R.
Mumbach
, and
A. M.
Taylor
,
Gems and Gemology
11
,
259
(
1965
).
14.
K. A.
Wickersheim
and
R. A.
Buchanan
,
Am. Mineralogist
44
,
440
(
1959
).
15.
K. A.
Wickersheim
and
R. A.
Buchanan
,
J. Chem. Phys.
42
,
1468
(
1965
).
16.
This crystal was grown by C. F. Chatham by a process which has not been revealed. The spectrum is the same as that of flux grown crystals made by
R. C.
Linares
,
A. A.
Ballman
, and
L. G.
Van Uitert
,
J. Appl. Phys.
33
,
3209
(
1962
).
17.
C. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand, Inc., New York, 1945), pp. 58, 171, 272, 280.
18.
H.
Boutin
,
G. J.
Safford
, and
H. R.
Danner
,
J. Chem. Phys.
40
,
2670
(
1964
).
19.
H. T.
Evans
, Jr.
and
M. E.
Mrose
,
Bull. Geol. Soc. Am.
, San Francisco Meeting, Abstract
C4
, p.
63
(
1966
).
20.
G. V. Gibbs (unpublished results).
a Note added in proof: X‐ray studies by
A.
Vorma
,
T. G.
Sahama
, and
I.
Haapala
(
Compt. Rend. Soc. Géol. Finlande
37
,
119
,
1965
),
which we had previously overlooked, indicate that alkali ions in beryl occur in the position between the rings, rather than within the rings, as shown in Fig. 6. Our spectroscopic results do not conflict with their conclusion, and we now accept this modification [see D. L. Wood and K. Nassau, Am. Mineralogist (to be published)].
21.
K. A. Wickersheim and R. A. Buchanan, Am. Mineralogist (to be published).
22.
H.
Boutin
,
H.
Prask
, and
G. J.
Safford
,
J. Chem. Phys.
42
,
1469
(
1965
).
23.
Y.
Sugitani
,
K.
Nagashima
, and
S.
Fujiwara
,
Bull. Chem. Soc. Japan
39
,
672
(
1966
).
24.
R.
Bose
,
Neues Jahrbuch Mineralogie, Abteilung A, Beil. Band
,
70
,
467
(
1936
).
This content is only available via PDF.
You do not currently have access to this content.