The perturbation theory previously shown to give good results for the equation of state of a square‐well fluid at liquid densities and temperatures is applied to more realistic potentials with soft repulsion, in particular the 6:12 potential. For an arbitrary potential function a modified potential is defined involving three parameters, namely a hard‐sphere diameter, an inverse‐steepness parameter for the repulsive region, and a depth parameter for the attractive region. When the latter parameters are zero, the modified potential becomes the hard‐sphere potential; when they are one, it becomes the original potential. The configuration integral is expanded in a double‐power series in the inverse‐steepness and depth parameters, the hard‐sphere diameter being chosen so that the first‐order term in the inverse‐steepness parameter is zero. The first‐order term in the depth parameter is evaluated essentially exactly and the second‐order term approximately: other second‐order terms and all higher‐order terms are neglected. The resulting equation of state is in good agreement with molecular dynamics, Monte Carlo results, and experimental data for argon at all temperatures and densities relevant for fluids.

1.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
2.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
3.
E. B.
Smith
and
B. J.
Alder
,
J. Chem. Phys.
30
,
1190
(
1959
).
4.
H.
Frisch
,
J. L.
Katz
,
E.
Praestgaard
, and
J. L.
Lebowitz
,
J. Phys. Chem.
70
,
2016
(
1966
).
5.
D. A.
McQuarrie
and
J. L.
Katz
,
J. Chem. Phys.
44
,
2393
(
1966
).
6.
J. S.
Rowlinson
,
Mol. Phys.
7
,
349
(
1964
);
J. S.
Rowlinson
,
8
,
107
(
1964
).,
Mol. Phys.
7.
B. J.
Alder
,
Ber. Bunsenges. Physik. Chem.
70
,
968
(
1966
).
8.
M. S.
Wertheim
,
Phys. Rev. Letters
10
,
321
(
1963
);
M. S.
Wertheim
,
J. Math. Phys.
5
,
643
(
1964
);
E.
Thiele
,
J. Chem. Phys.
39
,
474
(
1963
).
9.
G. J.
Throop
and
R. J.
Bearman
,
J. Chem. Phys.
42
,
2408
(
1965
).
10.
F. H.
Ree
and
W. G.
Hoover
,
J. Chem. Phys.
40
,
939
(
1964
).
11.
J. A.
Barker
,
P. J.
Leonard
, and
A.
Pompe
,
J. Chem. Phys.
44
,
4206
(
1966
).
12.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
13.
W. W.
Wood
and
F. R.
Parker
,
J. Chem. Phys.
27
,
720
(
1957
).
14.
I. R. McDonald and K. Singer, “Calculation of Thermodynamic Properties of Liquid Argon from Lennard‐Jones Parameters by a Monte Carlo Method,” Discussions Faraday Soc. (to be published).
15.
A.
Michels
,
H.
Wijker
, and
H.
Wijker
,
Physica
15
,
627
(
1949
).
16.
A.
Michels
,
J. M.
Levelt
, and
G. J.
Wolkers
,
Physica
24
,
769
(
1958
).
17.
J. M. H.
Levelt
,
Physica
26
,
361
(
1960
).
18.
A.
Van Itterbeek
and
O.
Verbeke
,
Physica
26
,
931
(
1960
).
19.
A.
Van Itterbeek
,
O.
Verbeke
, and
K.
Staes
,
Physica
29
,
742
(
1963
).
20.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
21.
J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworths Scienctific Publications Ltd., London, 1959).
22.
E. R.
Dobbs
and
G. O.
Jones
,
Rep. Progr. Phys.
20
,
516
(
1957
);
E. A.
Guggenheim
and
M. L.
McGlashan
,
Proc. Roy. Soc. (London)
A255
,
456
(
1960
).
23.
J. S.
Rowlinson
,
Discussions Faraday Soc.
40
,
19
(
1965
).
24.
J. A. Barker, Lattice Theories of the Liquid State (Pergamon Press Ltd., London, 1963), Chaps. 4–8.
25.
Ref. 24, Chap. 9;
H. S.
Chung
and
J. S.
Dahler
,
J. Chem. Phys.
40
,
2868
(
1964
);
H. S.
Chung
and
J. S.
Dahler
,
42
,
2374
(
1965
); ,
J. Chem. Phys.
H. S.
Chung
and
J. S.
Dahler
,
43
,
2606
(
1965
).,
J. Chem. Phys.
26.
D.
Levesque
,
Physica
32
,
1985
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.