The velocity dependence of total cross sections has been measured for the scattering of Na atoms from CBr4, Br2, SnCl4, CCl4, CH3I, SF6, and SiCl4 (listed in order of decreasing chemical reactivity). All these systems show the ν−2/5 velocity dependence expected for the long‐range r−6 dispersion force term in the intermolecular potential. However, the usual undulatory structure from ``glory scattering'' associated with the van der Waals potential well appears in only one case, Na+SF6. For the most reactive systems, Na+CBr4, Br2, SnCl4, this absence of undulations may be attributed to quenching by reactive scattering, which is important even at impact parameters outside the van der Waals radius. For CH3I, the quenching is probably due to the anisotropy of the intermolecular potential. For CCl4 and SiCl4, it seems plausible that the quenching may be due to the presence of low‐frequency vibrations which distort the molecule appreciably during the collision.

1.
H.
Pauly
and
J. P.
Toennies
[
Advan. At. Mol. Phys.
1
,
195
(
1965
)] give a general review.
2.
For recent work on Q(υ) for alkali atoms+rare gases and Hg see: (a)
E. W.
Rothe
and
L. H.
Veneklasen
,
J. Chem. Phys.
46
,
1209
(
1967
);
and (b) F. von Busch, H. J. Strunck, and C. Schlier (to be published).
For He and H2+rare gases see: (c)
R.
Duren
,
R.
Feltgen
,
W.
Gaide
,
R.
Helbing
, and
H.
Pauly
,
Phys. Letters
18
,
282
(
1965
);
R.
Duren
,
R.
Feltgen
,
W.
Gaide
,
R.
Helbing
, and
H.
Pauly
,
20
,
501
(
1966
); ,
Phys. Lett.
and (d)
H.‐J.
Beier
,
Z. Physik
196
,
185
(
1966
).
For H+rare gases see: (e)
M. A. D.
Fluendy
,
R. M.
Martin
,
E. E.
Muschlitz
, Jr.
, and
D. R.
Herschbach
,
J. Chem. Phys.
46
,
2172
(
1967
). See, also, papers cited in these references.
3.
R. B.
Bernstein
and
T. J. P.
O’Brien
,
Discussions Faraday Soc.
40
,
35
(
1965
);
R. B.
Bernstein
and
T. J. P.
O’Brien
,
J. Chem. Phys.
46
,
1208
(
1967
).
4.
(a)
E. F.
Greene
,
A. L.
Moursund
, and
J.
Ross
,
Advan. Chem. Phys.
10
,
135
(
1966
);
(b) J. R. Airey, E. F. Greene, G. P. Reck, and J. Ross, “Scattering of K by a Series of Reactive and Non‐reactive Compounds in Crossed Molecular Beams,” J. Chem. Phys. (to be published).
5.
R. J.
Cross
, Jr.
,
E. A.
Gislason
, and
D. R.
Herschbach
,
J. Chem. Phys.
45
,
3582
(
1966
).
6.
S. M.
Trujillo
,
P. K.
Rol
, and
E. W.
Rothe
,
Rev. Sci. Instr.
33
,
841
(
1962
).
7.
P.
Kusch
,
J. Chem. Phys.
40
,
1
(
1964
).
8.
K.
Berkling
,
R.
Helbing
,
K.
Kramer
,
H.
Pauly
,
C.
Schlier
, and
P.
Toschek
,
Z. Physik
166
,
406
(
1962
).
9.
F.
von Busch
,
Z. Physik
193
,
412
(
1966
).
10.
(a)M. Polanyi, Atomic Reactions (Williams and Norgate, London, 1932);
(b)
W.
Heller
and
M.
Polanyi
,
Trans. Faraday Soc.
32
,
633
(
1936
);
(c) A. F. Trotman‐Dickenson, Gas Kinetics (Butterworths Scientific Publications, Ltd., London, 1955), p. 218. The Qτ values listed in Table I were obtained by dividing the rate constants by the mean Na‐atom velocity υ≃600 m/sec at 250 °C.
11.
For a review, see
D. R.
Herschbach
,
Advan. Chem. Phys.
10
,
319
(
1966
).
12.
E. W.
Rothe
and
R. B.
Bernstein
,
J. Chem. Phys.
31
,
1619
(
1959
).
13.
This was previously observed (a) for K+Br2 by
D.
Beck
,
J. Chem. Phys.
37
,
2884
(
1962
);
(b) for K+Br2 by
J. H.
Birely
and
D. R.
Herschbach
,
J. Chem. Phys.
44
,
1690
(
1966
); ,
J. Chem. Phys.
(c) for K+CH3I in Ref. 5.
14.
R. J.
Cross
,Jr.
and
D. R.
Herschbach
,
J. Chem. Phys.
43
,
3530
(
1965
);
R. J.
Cross
, Jr.
,
J. Chem. Phys.
46
,
609
(
1967
).,
J. Chem. Phys.
15.
K. P.
Lawley
and
J.
Ross
[
J. Chem. Phys.
43
,
2943
(
1965
)] have computed a value of 48 Å2 for Li‐HBr. The dipole moment of CH3I is considerably larger than HBr (1.65 D compared with 0.79 D, see Ref. 12) and the quadrupole moment is certainly larger. In addition, the rotational energy levels of CH3I are spaced considerably closer than for HBr, all of which should increase Qrot.
16.
H. Kramer and P. LeBreton (private communication) have observed undulations for Na+CF4 (lowest asymmetric frequencies, 437 and 630 cm−1, see Footnote e of Table I), but not for Na+C(CH3)4 [asymmetric skeletal vibrations, 335 and 414 cm−1;
methyl‐group torsions still lower—see
C. W.
Young
,
J. S.
Koehler
, and
D. S.
McKinney
,
J. Am. Chem. Soc.
69
,
1410
(
1947
)].
This content is only available via PDF.
You do not currently have access to this content.