A general formal theory is developed for the autoionization of molecules at energies within a few electron volts or less of threshold, specifically to include effects of the interaction of an excited Rydberg electron with the rotating, vibrating molecule—ion to which it is bound. The dominant coupling mechanism involves conversion of vibrational energy to electronic energy and is most efficient when the core can undergo a single quantum jump. A number of simplifications and approximations are discussed. Some of these are used in an application of the theory to the autoionization of H2. Autoionization rates are computed for a number of vibronic Rydberg states of this molecule, and are consistent with the available data. Model calculations for heteronuclear diatomics are presented to show how the presence of a vibrating dipole in the molecular core enhances the rates of autoionization, in comparison with the rates in homonuclear diatomics where vibrating quadrupoles stimulate the process. Several experiments are suggested, particularly the measurement of the angular distributions of electrons detached from heteronuclear diatomics.

1.
H2: (a)
G. R.
Cook
and
P. H.
Metzger
,
J. Opt. Soc. Am.
54
,
968
(
1964
) (photoionization);
(b)
P. H.
Doolittle
and
R. I.
Schoen
,
Phys. Rev. Letters
14
,
348
(
1965
) (photoionization);
(c)
V. H.
Dibeler
,
R. M.
Reese
, and
M.
Krauss
,
J. Chem. Phys.
42
,
2045
(
1965
) (photoionization);
(d)
F. J.
Comes
and
W.
Lessman
,
Z. Naturforsch.
19a
,
508
(
1964
) (photoionization);
(e)
D.
Briglia
and
D.
Rapp
,
Phys. Rev. Letters
14
,
245
(
1965
) (electron impact);
(f) J. W. McGowan and M. A. Fineman, Proc. Intern. Conf. Phys. Electron. At. Collisions 4th Univ. Laval, Quebec, Canada, August 1965 (to be published) (electron impact);
(g)
H.
Beutler
and
H.‐O.
Junger
,
Z. Physik
100
,
80
(
1936
) (spectroscopic);
(h)
H.
Beutler
and
H.‐O.
Junger
,
Z. Physik
101
,
285
(
1936
).,
Z. Phys.
2.
N2: (a)
G. R.
Cook
and
P. H.
Metzger
,
J. Chem. Phys.
41
,
321
(
1964
) (photoionization);
(b)
Y.
Tanaka
and
T.
Takamine
,
Sci. Papers Inst. Phys. Chem. Research (Tokyo)
39
,
427
(
1942
) (absorption);
(c)
G. L.
Weissler
,
J. A. R.
Samson
,
M.
Ogawa
, and
G. R.
Cook
,
J. Opt. Soc. Am.
49
,
338
(
1959
);
(d)
F. J.
Comes
and
W.
Lessman
,
Z. Naturforsch.
16a
,
1038
(
1961
) (photoionization);
(e)
E. M.
Clarke
,
Can. J. Phys.
32
,
764
(
1954
) (electron impact);
(f)
F. H.
Dorman
,
J. D.
Morrison
, and
A. J. C.
Nicholson
,
J. Chem. Phys.
32
,
378
(
1960
) (electron impact);
(g) M. A. Fineman, E. M. Clarke, H. P. Hanson, and J. W. McGowan, Proc. Intern. Conf. Phys. Electron. At. Collisions 4th Univ. Laval, Quebec, Canada, August, 1965 (to be published) (electron impact).
3.
O2: (a)
J. W.
McGowan
,
E. M.
Clarke
,
H. P.
Hanson
, and
R. F.
Stebbings
,
Phys. Rev. Letters
13
,
620
(
1964
) (electron impact);
(b)
A. J. C.
Nicholson
,
J. Chem. Phys.
39
,
954
(
1963
) (photoionization);
(c)
Y.
Tanaka
and
T.
Takamine
,
Phys. Rev.
59
,
771
(
1941
) (absorption); see Ref. 2(c) for further photoionization work.
Also, for several other molecules, see
J. D.
Morrison
,
H.
Hurzeler
,
M. G.
Inghram
, and
H. E.
Stanton
,
J. Chem. Phys.
33
,
821
(
1960
).
4.
It is unclear in the NO data, for example, whether there is any detailed structure of the type discussed here. The peaks, if any, are very broad; there may be no structure at all. See, for example, Refs. 3 (b) and 2 (c) and P. H. Doolittle and R. I. Schoen, “Electron Retarding Potential Studies of Photoionization” (Geo‐Astrophysics Laboratory, Boeing Scientific Research Laboratories, Seattle, Wash.; presented at ASTM meeting on Mass Spectroscopy and Allied Topics, St. Louis, Mo., May 1965). For possible autoionization in CO, see Ref. 2(c).
5.
For benzene, as an example for which a reasonable amount of evidence exists, see
A. J. C.
Nicholson
,
J. Chem. Phys.
43
,
1171
(
1965
).
6.
Theoretical: (a)
A. G.
Shenstone
,
Phys. Rev.
38
,
873
(
1931
);
(b)
B. H.
Bransden
and
A.
Dalgarno
,
Proc. Phys. Soc. (London)
A66
,
904
,
911
(
1953
);
(c)
U.
Fano
,
Phys. Rev.
124
,
1866
(
1961
);
(d)
U.
Fano
and
J. W.
Cooper
,
Phys. Rev.
137
,
A1364
(
1965
); ,
Phys. Rev.
(e)
J. D.
Morrison
,
J. Chem. Phys.
40
,
2488
(
1964
) and references therein.
7.
Experimental, from light absorption: (a)
H. E.
White
,
Phys. Rev.
38
,
2016
(
1931
);
(b)
H.
Beutler
,
Z. Physik
93
,
177
(
1935
);
(c)
W. R. S.
Garton
,
J. Quant. Spectry. Radiative Transfer
2
,
335
(
1962
);
(d)
K.
Codling
and
R. P.
Madden
,
Phys. Rev. Letters
12
,
106
(
1964
);
(e)
R. P.
Madden
and
K.
Codling
,
J. Opt. Soc. Am.
54
,
268
(
1964
). Most of these contain numerous other pertinent references.
8.
Experimental, from electron impact: (a)
E. N.
Lassetre
and
S.
Silverman
,
J. Chem. Phys.
40
,
1265
(
1964
);
(b)
G. J.
Shulz
,
Phys. Rev.
136
,
A650
(
1964
);
(c)
G. J.
Schulz
,
Phys. Rev. Letters
13
,
583
(
1964
);
(d)
G. E.
Chamberlain
,
Phys. Rev. Letters
14
,
581
(
1965
); ,
Phys. Rev. Lett.
(e)
C. E.
Kuyatt
,
J. A.
Simpson
, and
S. R.
Mielczarek
,
Phys. Rev.
138
,
A385
(
1965
).
9.
M. R.
Flannery
and
U.
Opik
,
Proc. Phys. Soc. (London)
86
,
491
(
1965
).
10.
J. R. Hiskes and C. B. Tarter, “Radiative Transition Probabilities in Hydrogen” UCRL‐7088 Rev. I, Physics UC‐34, available from the Office of Technical Services, U.S. Dept. of Commerce, Washington 25, D.C.
11.
M.
Wacks
,
J. Res. Natl. Bur. Std.
68A
,
631
(
1964
).
12.
R. S.
Mulliken
,
J. Am. Chem. Soc.
86
,
3183
(
1964
).
13.
F.
Ham
,
Solid State Phys.
1
,
127
(
1955
).
14.
M. J.
Seaton
,
Monthly Notices Roy. Astron. Soc.
118
,
504
(
1958
).
15.
N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions (Oxford University Press, London, 1965), 3rd ed., pp. 65–68.
16.
A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc., New York, 1962), pp. 793–800.
17.
G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N.J., 1950), pp. 106–116.
18.
T.
Namioka
,
J. Chem. Phys.
41
,
2141
(
1964
).
19.
A.
Monfils
,
J. Mol. Spectry.
15
,
265
(
1965
).
20.
G. W.
Robinson
and
R. P.
Frosch
,
J. Chem. Phys.
37
,
1962
(
1962
).
21.
See Ref. 17, pp. 226–237.
22.
E. L.
Hill
and
J. H.
Van Vleck
,
Phys. Rev.
32
,
250
(
1928
).
23.
J. H.
Van Vleck
,
Phys. Rev.
33
,
467
(
1929
).
24.
(a)
R.
Herman
and
R. F.
Wallis
,
J. Chem. Phys.
23
,
637
(
1955
);
see also (b)
R. C.
Herman
and
K. E.
Shuler
,
J. Chem. Phys.
22
,
481
(
1954
); ,
J. Chem. Phys.
(c)
J.
Trischka
and
H.
Salwen
,
J. Chem. Phys.
31
,
218
(
1959
); ,
J. Chem. Phys.
and (d)
J.
Goodisman
,
J. Chem. Phys.
38
,
2597
(
1963
).,
J. Chem. Phys.
25.
See Ref. 16, pp. 722–728.
26.
W.
Magnus
,
Commun. Pure Appl. Math.
7
,
649
(
1954
).
27.
D. W.
Robinson
,
Helv. Phys. Acta
36
,
140
(
1963
).
28.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
44
,
3897
(
1966
).
29.
D. R.
Bates
and
G.
Poots
,
Proc. Phys. Soc. (London)
A66
,
784
(
1953
).
30.
D. R.
Bates
,
K.
Ledsham
, and
A. L.
Stuart
,
Phil. Trans. Roy. Soc. (London)
A246
,
215
(
1953
).
31.
E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge, England, 1953).
32.
Cf. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One‐ and Two‐Electron Atoms (Academic Press Inc., New York, 1957), pp. 12–25.
33.
P. H.
Doolittle
and
R. I.
Schoen
,
Phys. Rev. Letters
14
,
348
(
1965
).
34.
W. S.
Benedict
,
R.
Herman
,
G. E.
Moore
, and
S.
Silverman
,
J. Chem. Phys.
26
,
1671
(
1957
).
35.
L.
Wharton
,
L. P.
Gold
, and
W.
Klemperer
,
J. Chem. Phys.
33
,
1255
(
1960
);
L.
Wharton
,
L. P.
Gold
, and
W.
Klemperer
,
37
,
2149
(
1962
).,
J. Chem. Phys.
36.
L.
Wharton
,
M.
Kaufman
, and
W.
Klemperer
,
J. Chem. Phys.
37
,
621
(
1962
).
37.
M.
Kaufman
,
L.
Wharton
, and
W.
Klemperer
,
J. Chem. Phys.
43
,
943
(
1965
).
38.
S. M.
Blinder
,
J. Chem. Phys.
32
,
105
(
1960
).
39.
S. M.
Blinder
,
J. Chem. Phys.
32
,
582
(
1960
).
40.
T.
Takamine
,
T.
Suga
, and
Y.
Tanaka
,
Sci. Papers Inst. Phys. Res. (Tokyo)
34
,
854
(
1938
).
41.
R. E.
Worley
,
Phys. Rev.
89
,
863
(
1953
).
This content is only available via PDF.
You do not currently have access to this content.