All known intermolecular Raman bands of water, viz., the hydrogen‐bond bending and stretching bands, and the librational bands, decrease rapidly in intensity with temperature rise. In contrast, the librational intensities of water in electrolyte solutions exhibit very small variations with temperature. The intensity decreases observed for pure water indicate that hydrogen bonds are broken by increase of temperature, but the near constancy observed for solutions indicates that primary hydration is not greatly affected, even at temperatures near the normal boiling points of some of the solutions studied.

Integrated Raman intensities of the hydrogen‐bond‐stretching vibrations of pure water at 152–175 cm−1 were redetermined in the temperature range of −6.0° to 94.7°C. The new intensity data, which are more accurate than the old [cf., J. Chem. Phys. 40, 3249 (1964)], yield the values ΔH°=5.6 kcal/mole and ΔS°≈19 cal/deg·mole for the process B→U, where B refers to water molecules which contribute intensity to the 152–175‐cm−1 Raman band, and U refers to molecules which make very little or no contribution. Interpreted in terms of non hydrogen‐bonded monomeric defects in a tetrahedral liquid lattice, the above ΔH° yields a value of 2.8 kcal/mole H bond in resonable agreement with Scatchard's value of 3.41 kcal/mole H bond. The value of ΔS° for the process B→U also leads to interesting comparisons with known entropies, but the calculated heat capacity of water is only in fair agreement with accepted values.

The observed insensitivity of the solution librational intensities to changes of temperature indicates that primary hydration is involved almost exclusively. This conclusion complements the previous observations involving linearity of librational intensity with electrolyte concentration [cf., J. Chem. Phys. 36, 1035 (1962)], since both observations can be explained by primary hydration.

In addition, molar librational intensities (obtained from the temperature studies) confirm the large anionic effects reported previously, with Br>Cl, but they also indicate that the effects produced by NH4+ are much smaller than those arising from Li+, Na+, and K+. It is apparent, therefore, that at least some cationic effects can be observed in the Raman spectra.

1.
G. E.
Walrafen
,
J. Chem. Phys.
36
,
1035
(
1962
).
2.
G. E.
Walrafen
,
J. Chem. Phys.
40
,
3249
(
1964
).
3.
W. R.
Busing
and
D. F.
Hornig
,
J. Phys. Chem.
65
,
284
(
1961
).
4.
J. W.
Schultz
and
D. F.
Hornig
,
J. Phys. Chem.
65
,
2131
(
1961
).
5.
R. E.
Weston
,
Spectrochim. Acta
18
,
1257
(
1962
).
6.
H. A.
Lauwers
and
G. P.
Van der Kelen
,
Bull. Soc. Chim. Belges
72
,
477
(
1963
).
7.
J. Clifford, B. A. Pethica, and W. A. Senior, Conference on Forms of Water in Biologic Systems (New York Academy of Sciences, New York, 1964).
8.
Z.
Kecki
,
Roczniki Chem.
38
,
329
(
1964
).
9.
T. T. Wall, doctoral dissertation, Princeton University, 1963;
T. T.
Wall
and
D. F.
Hornig
,
J. Chem. Phys.
43
,
2079
(
1965
).
10.
W. A.
Senior
and
W. K.
Thompson
,
Nature
205
,
170
(
1965
).
11.
G. E.
Walrafen
,
J. Chem. Phys.
43
,
479
(
1965
).
12.
G. E.
Walrafen
,
J. Chem. Phys.
40
,
2326
(
1964
).
13.
D. J.
Hughes
,
H.
Palevsky
,
W.
Kley
, and
E.
Tunkelo
,
Phys. Rev.
119
,
872
(
1960
).
14.
A. E.
Stanevich
and
N. G.
Yaroslavsky
,
Dokl. Akad. Nauk SSSR
137
,
60
(
1961
)
[English transl.:
A. E.
Stanevich
and
N. G.
Yaroslavsky
,
Soviet Phys.‐Doklady
6
,
224
(
1961
)].
15.
C. H.
Cartwright
,
Phys. Rev.
49
,
470
(
1936
).
16.
L. A.
Woodward
and
D. A.
Long
,
Trans. Faraday Soc.
45
,
1131
(
1949
).
17.
G.
Satchard
,
G. M.
Kavanagh
, and
L. B.
Ticknor
,
J. Am. Chem. Soc.
74
,
3715
(
1952
);
G.
Satchard
,
G. M.
Kavanagh
, and
L. B.
Ticknor
,
74
,
3724
(
1952
).,
J. Am. Chem. Soc.
18.
L.
Grunberg
and
A. H.
Nissan
,
Trans. Faraday Soc.
45
,
125
(
1949
).
19.
K. J.
Mysels
,
J. Am. Chem. Soc.
86
,
3503
(
1964
).
20.
J. P.
Kratohvil
,
M.
Kerker
, and
L. E.
Oppenheimer
,
J. Chem. Phys.
43
,
914
(
1965
).
21.
M. D.
Danford
and
H. A.
Levy
,
J. Am. Chem. Soc.
84
,
3965
(
1962
).
22.
G.
Wada
,
Bull. Chem. Soc. Japan
34
,
955
(
1961
).
23.
W.
Luck
,
Fortschr. Chem. Forsch.
4
,
653
(
1964
).
24.
L.
Hall
,
Phys. Rev.
73
,
775
(
1948
).
25.
J.
Hallett
,
Proc. Phys. Soc. (London)
A82
,
1046
(
1963
).
26.
C. M.
Davis
, Jr.
and
T. A.
Litovitz
,
J. Chem. Phys.
42
,
2563
(
1965
).
27.
H. S.
Frank
and
M. W.
Evans
,
J. Chem. Phys.
13
,
507
(
1945
).
28.
H. S.
Frank
and
W. Y.
Wen
,
Discussions Faraday Soc.
24
,
133
(
1957
).
29.
H. S.
Frank
,
Proc. Roy. Soc. (London)
A247
,
481
(
1958
).
30.
H. S.
Frank
and
A. S.
Quist
,
J. Chem. Phys.
34
,
604
(
1961
).
31.
H. S. Frank, Desalination Research Conference Proceedings, Washington, 1963, NAS‐NRC Publication 942, 141.
32.
R. P.
Marchi
and
H.
Eyring
,
J. Phys. Chem.
68
,
221
(
1964
).
33.
G.
Némethy
and
H. A.
Scheraga
,
J. Chem. Phys.
36
,
3382
(
1962
).
34.
G.
Némethy
and
H. A.
Scheraga
,
J. Chem. Phys.
41
,
680
(
1964
).
35.
L.
Pauling
and
R. E.
Marsh
,
Proc. Natl. Acad. Sci. (U.S.)
38
,
112
(
1952
).
36.
L. Pauling, Hydrogen Bonding, edited by D. Hadzi (Pergamon Press, Ltd., London, 1959).
37.
E.
Forslind
,
Acta Polytech. Scand.
115
,
9
(
1952
).
38.
P. Saumagne, doctoral dissertation, University of Bordeaux, 1961.
39.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
2
,
559
(
1934
).
40.
J.
Morgan
and
B. E.
Warren
,
J. Chem. Phys.
6
,
666
(
1938
).
41.
O. Ya.
Samoilov
,
Zh. Fiz. Khim.
20
,
1411
(
1946
).
42.
O. Ya.
Samoilov
,
Discussions Faraday Soc.
24
,
141
(
1957
).
43.
M. Falk and T. A. Ford, Symp. Mol. Structure Spectry. Columbus, June 14–18, 1965.
44.
J. A.
Pople
,
Proc. Roy. Soc. (London)
A205
,
163
(
1951
).
45.
P. M.
Vollmar
,
J. Chem. Phys.
39
,
2236
(
1963
).
46.
T. F. Young, L. F. Maranville, and H. M. Smith, The Structure of Electrolytic Solutions, edited by W. J. Hamer (John Wiley & Sons, Inc., New York, 1959).
47.
Ca2+H2ONO3 interactions are thought to be predominantly ionic. D. E. Irish and G. E. Walrafen J. (to be published).
48.
Here the cation‐oxygen hydration interactions are very large, and they involve covalent cation‐oxygen bonds with cations such as Zn2+, vid.,
D. E.
Irish
,
B.
McCarroll
, and
T. F.
Young
,
J. Chem. Phys.
39
,
3436
(
1963
).
49.
J.
van der Elsken
and
D. W.
Robinson
,
Spectrochim. Acta
,
17
,
1249
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.