The results of an extensive study of some dilute solution properties of a series of linear, homogeneous (anionically prepared) polystyrenes (4.8<10−4M<440) over a wide temperature interval (10°<T<110°C) in decalin and toluene are described. The data are used to obtain detailed comparisons among the second virial coefficient A2, the mean‐square molecular radius 〈s2〉, the molecular weight M, and the temperature. The empirical correlations thus obtained are compared to theoretical predictions. In particular, it is found that A2M½(〈s2〉/M)032 and α2=〈s2〉/〈s20 are each single‐valued functions of the interaction parameter z=B(〈s20/M)032M½, when B is assumed to have the temperature dependence B=B0[1—(Θ/T)]. Certain theoretical predictions for the dependence of A2M½3 on z3 are found to adequately describe the form of the observed behavior and can be used as the basis for a satisfactory empirical relation. The observed dependence of α2 on z is satisfactorily predicted by recent calculations of Flory and Fisk. It is expected that the correlations given among A2, α2, and z will be valid for any flexible, nonionic polymer.

1.
F.
Wenger
and
S.‐P. S.
Yen
,
Makromol. Chem.
37
,
153
(
1960
).
2.
G. C. Berry, Mellon Institute Quarterly Report, 1966. Copies available on request.
3.
D.
McIntyre
and
M. C.
Doderer
,
J. Res. Natl. Bur. Std.
62
,
153
(
1959
).
4.
S. Katz (private communication).
5.
E. F.
Casassa
and
S.
Katz
,
J. Polymer Sci.
14
,
385
(
1954
).
6.
J. J.
Hermans
and
S.
Levinson
,
J. Opt. Soc. Am.
41
,
460
(
1951
).
7.
D.
McIntyre
,
J. Res. Natl. Bur. Std.
68A
,
87
(
1964
).
8.
J. H.
O’Mara
and
D.
McIntyre
,
J. Phys. Chem.
63
,
1435
(
1959
).
9.
I.
Ehl
,
C.
Loucheux
,
C.
Reiss
, and
H.
Benoit
,
Makromol. Chem.
75
,
35
(
1964
).
10.
B. H.
Zimm
,
J. Chem. Phys.
16
,
1093
,
1099
(
1948
).
11.
P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, N.Y., 1953), p. 280.
12.
P. J.
Flory
and
W. R.
Krigbaum
,
J. Chem. Phys.
18
,
1086
(
1950
).
13.
R.
Okada
,
Y.
Toyoshima
, and
H.
Fujita
,
Makromol. Chem.
59
,
137
(
1963
).
14.
C.
Reiss
and
H.
Benoit
,
Compt. Rend.
253
,
268
(
1962
).
15.
T. G.
Fox
,
Polymer
3
,
111
(
1962
).
16.
J. H. Hildebrand and R. L. Scott, The Solubility of Non‐electrolytes (Reinhold Publ. Corp., New York, 1950).
17.
W. R.
Krigbaum
and
D. K.
Carpenter
,
J. Phys. Chem.
59
,
1166
(
1955
).
18.
Complete tables of the data displayed in Figs. 5 and 6 are available from the author on request.
19.
T. A.
Orofino
and
T. W.
Mickey
,
J. Chem. Phys.
38
,
2512
(
1963
).
20.
P.
Outer
,
C. J.
Carr
, and
B. H.
Zimm
,
J. Chem. Phys.
18
,
830
(
1950
).
21.
W. H.
Stockmayer
,
Makromol. Chem.
35
,
54
(
1960
).
22.
H. Tompa, Polymer Solutions (Butterworths Scientific Publications, Ltd., London, 1956), pp. 147ff.
23.
Reference 7, pp. 530ff.
24.
T. A.
Orofino
and
A.
Ciferri
,
J. Phys. Chem.
68
,
3136
(
1964
).
25.
G. C. Berry Part II of this study, (to be published).
26.
Also neglected is a slight temperature dependence predicted or B0 by some of the lattice theories.12
27.
An iterative calculation is used to construct Fig. 7, the first estimate for B0 being made by setting F′(z)≡1. This estimate is then used in conjunction with a theory for F′(z) to obtain an improved estimate for B0. In actual fact, the first and second estimates for B0 usually agree satisfactorily. The particular theory used to estimate F′(z) is not of great importance, so long as it is at least correct in the limit T = Θ; we have used Eq. (19) here. This method of determining B0, as opposed to a straightforward analysis of A2 versus 1/T, is most useful for large M since here the function F′(z) rapidly departs from unity as T departs from Θ.
28.
B. H.
Zimm
,
J. Phys. Chem.
14
,
164
(
1946
).
29.
A. C.
Albrecht
,
J. Chem. Phys.
33
,
151
(
1960
).
30.
G. V.
Schulz
and
K.
Kirste
,
Z. Physik. Chem. (Frankfurt)
30
,
171
(
1961
).
31.
C. E. H.
Bawn
,
R. F. J.
Freeman
, and
A. R.
Kamaliddin
,
Trans. Faraday Soc.
46
,
862
(
1950
).
32.
We have reanalyzed these data according to the equation (II/c)12 = (II/c)012[1+ (Γ2c/2)] to obtain slightly different estimate of Γ2 than those reported in Ref. 30.
33.
H.
Sotobayashi
and
K.
Ueberreiter
,
Z. Electrochem.
66
,
538
(
1962
).
34.
B. H.
Zimm
,
W. H.
Stockmayer
, and
M.
Fixman
,
J. Chem. Phys.
21
,
1716
(
1953
).
35.
M.
Fixman
,
J. Chem. Phys.
23
,
1656
(
1955
).
36.
P. J.
Flory
,
J. Chem. Phys.
17
,
303
(
1949
).
37.
T. B.
Grimley
,
Trans. Faraday Soc.
55
,
681
(
1954
).
38.
W. H.
Stockmayer
,
J. Polymer Sci.
15
,
595
(
1955
).
39.
M.
Fixman
,
J. Chem. Phys.
36
,
306
(
1962
).
40.
P. J.
Flory
and
S.
Fisk
,
J. Chem. Phys.
44
,
2243
(
1966
).
41.
S. F.
Edwards
,
Proc. Phys. Soc. (London)
85
,
613
(
1965
).
42.
M.
Fixman
,
J. Chem. Phys.
36
,
3123
(
1962
).
43.
M.
Kurata
,
W. H.
Stockmayer
, and
A.
Roig
,
J. Chem. Phys.
33
,
151
(
1960
).
44.
O. B.
Ptitsyn
,
Vysokomolekul. Soedin.
3
,
1673
(
1961
)
[English transl.:
O. B.
Ptitsyn
,
Polymer Sci. (USSR)
3
,
1061
(
1962
)].
45.
T. A.
Orofino
and
P. J.
Flory
,
J. Chem. Phys.
26
,
1067
(
1957
).
46.
E. F.
Casassa
and
H.
Markovitz
,
J. Chem. Phys.
29
,
493
(
1958
).
47.
E. F.
Casassa
,
J. Chem. Phys.
31
,
800
(
1959
).
48.
M.
Kurata
,
M.
Fukatsu
,
H.
Sotobayashi
, and
H.
Yamakawa
,
J. Chem. Phys.
41
,
139
(
1964
).
49.
G. C.
Berry
,
V. C.
Long
, and
L. M.
Hobbs
,
Polymer
5
,
31
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.