The zero‐field splitting parameters corresponding to exponential‐orbital wavefunctions for benzene and naphthalene have been evaluated by the Gaussian transform technique. Comparison of the results obtained with and without multicenter integrals shows significant differences; in particular, an erroneous value for E in naphthalene is found if only two‐center integrals are included. For the lowest triplet in benzene, the use of accurate integrals with the wavefunction of van der Waals and de Groot for the quinoid structure improves the agreement with the experimental D* value. In naphthalene, Pariser's wavefunction and accurate integrals give a D that is close to the measured result; however, the E determined from the same wavefunction is considerably too small in magnitude.

A qualitative examination of the effect of D on substitution in benzene and naphthalene is made. For benzene it is found that most substituents should decrease D or D*; only if a weak mesomeric interaction is involved (e.g., CH3) is an increase in D* expected. In naphthalene, the effect of substituents is expected to be considerably smaller than in benzene. Comparisons with the limited available data show agreement with these conclusions.

1.
C. A.
Hutchison
Jr.
and
B. W.
Mangum
,
J. Chem. Phys.
29
,
952
(
1958
);
C. A.
Hutchison
Jr.
and
B. W.
Mangum
,
34
,
908
(
1961
).,
J. Chem. Phys.
2.
M.
Gouterman
and
W.
Moffitt
,
J. Chem. Phys.
30
,
1107
(
1959
);
M. Gouterman, ibid., p. 1369;
H.
Hameka
,
J. Chem. Phys.
31
,
315
(
1960
); ,
J. Chem. Phys.
R. Bersohn (unpublished calculations, 1959).
3.
S. A.
Boorstein
and
M.
Gouterman
,
J. Chem. Phys.
39
,
2443
(
1963
).
4.
For a brief review, see
D.
Kivelson
and
C.
Thomson
,
Ann Rev. Phys. Chem.
15
,
197
(
1964
).
5.
Y.‐N.
Chiu
,
J. Chem. Phys.
39
,
2736
(
1963
).
6.
S. A.
Boorstein
and
M.
Gouterman
,
J. Chem. Phys.
41
,
2776
(
1964
).
7.
M.
Geller
,
J. Chem. Phys.
39
,
853
(
1963
);
M.
Geller
,
40
,
2309
(
1964
).,
J. Chem. Phys.
8.
J. H.
van der Waals
and
G.
ter Maten
,
Mol. Phys.
8
,
301
(
1964
).
9.
(a)
I.
Shavitt
and
M.
Karplus
,
J. Chem. Phys.
36
,
550
(
1962
);
I.
Shavitt
and
M.
Karplus
,
43
,
398
(
1965
); ,
J. Chem. Phys.
(b) C. W. Kern and M. Karplus, ibid., p. 415.
10.
J. H.
Van Vleck
,
Rev. Mod. Phys.
23
,
213
(
1951
);
A. D.
McLachlan
,
Mol. Phys.
6
,
441
(
1963
).
11.
M. S.
de Groot
and
J. H.
van der Waals
,
Mol. Phys.
2
,
333
(
1959
).
12.
W. A.
Yager
,
E.
Wasserman
, and
R. M. R.
Cramer
,
J. Chem. Phys.
37
,
1148
(
1962
).
13.
R.
McWeeny
,
J. Chem. Phys.
34
,
399
(
1961
).
14.
H. M.
McConnell
,
Proc. Natl. Acad. Sci. U.S.
45
,
172
(
1959
).
15.
A. D.
McLachlan
,
Mol. Phys.
5
,
51
(
1962
).
16.
S. A.
Boorstein
and
M.
Gouterman
,
J. Chem. Phys.
42
,
3070
(
1965
).
17.
M.
Karplus
and
I.
Shavitt
,
J. Chem. Phys.
38
,
1256
(
1963
).
18.
R. G.
Parr
,
D. P.
Craig
, and
I. G.
Ross
,
J. Chem. Phys.
18
,
1561
(
1950
).
19.
M. S.
de Groot
and
J. H.
van der Waals
,
Mol. Phys.
6
,
545
(
1963
).
20.
B.
Smaller
,
J. Chem. Phys.
37
,
1578
(
1962
).
21.
For quantum‐mechanical descriptions, see
J. N.
Murrell
and
H. C.
Longuet‐Higgins
,
Proc. Phys. Soc. (London)
A68
,
329
(
1955
);
J. N. Murrell, ibid., p. 969.
22.
M.
Godfrey
and
J. N.
Murrell
,
Proc. Roy. Soc. (London)
A278
,
71
(
1964
).
23.
R. W.
Brandon
,
R. E.
Gerkin
, and
C. A.
Hutchison
Jr.
,
J. Chem. Phys.
37
,
447
(
1962
).
24.
R.
Pariser
,
J. Chem. Phys.
24
,
250
(
1956
).
25.
L.
Goodman
and
J. R.
Hoyland
,
J. Chem. Phys.
34
,
1446
(
1961
).
26.
J. S.
Vincent
and
A. H.
Maki
,
J. Chem. Phys.
39
,
3088
(
1963
); see also Ref. 16.
27.
C.
Thomson
,
J. Chem. Phys.
41
,
1
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.