The rigid‐sphere theory of liquids is shown to yield an expression for the surface tension of a one‐component liquid which is essentially identical to an expression previously derived by the author employing a qualitative approach. Such a correlation suggests that the rigid‐sphere theory of liquids approach is applicable to a wide variety of nonpolar polymeric liquids.

1.
H. Schonhorn (to be published).
2.
J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes (Reinhold Publishing Corporation, New York, 1950).
3.
J. I.
Lauritzen
, Jr.
and
J. D.
Hoffman
,
J. Res. Natl. Bur. Std. (U.S.)
64A
,
73
(
1960
).
4.
H. Schonhorn and S. Matsuoka, (to be published).
5.
S.
Matsuoka
,
J. Polymer Sci.
57
,
569
(
1962
).
6.
G.
Allen
,
G.
Gee
,
D.
Mangaraj
,
D.
Sims
, and
G. J.
Wilson
,
Polymer
1
,
456
,
467
(
1960
).
7.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
8.
H.
Reiss
,
H. L.
Frisch
,
E.
Helfand
, and
J. L.
Lebowitz
,
J. Chem. Phys.
32
,
119
(
1960
).
9.
H.
Reiss
and
S. W.
Mayer
,
J. Chem. Phys.
34
,
2001
(
1961
);
S. W.
Mayer
,
J. Chem. Phys.
35
,
1513
(
1961
).,
J. Chem. Phys.
10.
S. W.
Mayer
,
J. Chem. Phys.
38
,
1803
(
1963
);
S. W.
Mayer
,
J. Phys. Chem.
67
,
2160
(
1963
).
11.
H. Schonhorn (to be published).
12.
The author is indebted to E. Helfand for pointing out this method of factorization.
13.
L. Mandelkern, Crystallization of Polymers (McGraw‐Hill Book Company Inc., New York, 1964).
14.
V. K.
Semenchenko
and
M. M.
Martynyuk
,
Kolloid. Z.
24
,
323
,
611
(
1962
);
V. K.
Semenchenko
and
M. M.
Martynyuk
,
25
,
190
(
1963
).
15.
H.
Schonhorn
and
L. H.
Sharpe
,
J. Polymer Sci.
A3
,
569
(
1965
).
This content is only available via PDF.
You do not currently have access to this content.