The Mössbauer spectra of 49 organo‐tin compounds have been studied at liquid‐nitrogen absorber temperatures, using a ceramic 119SnO2m source at room temperature with a parabolic motion spectrometer. The linear relationship between isomer shift and ligand electronegativity suggested by Goldanskii for compounds of the type SnX4 has been extended to organo‐tin compounds with mixed ligands. On the basis of the observed isomer‐shift range, the percentage of ionic character in organo‐tin compounds is estimated as lying within an interval of ±5% of a mean value of ∼15%. Binuclear tin compounds of the type R3Sn—SnR3 show no resolvable quadrupole splitting. In aryl‐tin compounds, para and meta substitution has little or no effect on the s character of the carbon—tin bond. The ratio ρ of the quadrupole splitting to the isomer shift (with respect to SnO2) has a value larger than 2.10 for compounds in which the Sn atom is sp3d hybridized or in which there is significant departure from tetrahedral symmetry, while ρ values in the range 0 to 1.8 are associated with tetrahedral (sp3 hybridized) tin atoms.

1.
R. H. Herber, G. K. Wertheim, and H. A. Stöckler, Paper No. 22, Division of Physical Chemistry, American Chemical Society Meeting, Chicago, Illinois, September 1961;
G. K.
Wertheim
and
R. H.
Herber
,
J. Chem. Phys.
38
,
2106
(
1963
).
2.
G. K. Wertheim and R. H. Herber, The Mössbauer Effect, edited by D. M. J. Compton and A. H. Schoen (John Wiley & Sons, Inc., New York, 1962);
see also
L. M.
Epstein
,
J. Chem. Phys.
36
,
2731
(
1962
).
3.
For recent reviews of this technique and its theoretical implications see: G. K. Wertheim, An Introduction to the Mössbauer Effect (Academic Press Inc., New York, 1964);
V. I.
Goldanskii
,
At. Energy Rev.
1
,
3
(
1963
).
4.
V. I. Goldanskii, The Mössbauer Effect and its Applications in Chemistry (Consultants Bureau Enterprises, Inc., New York, 1964).
5.
U.
Zahn
,
P.
Kienle
, and
H.
Eicher
,
Z. Physik
166
,
220
(
1962
).
6.
A. D.
Harris
,
R. H.
Herber
,
H. B.
Jonassen
, and
G. K.
Wertheim
,
J. Am. Chem. Soc.
85
,
2927
(
1963
).
7.
R. H.
Herber
,
R. B.
King
, and
G. K.
Wertheim
,
Inorg. Chem.
3
,
101
(
1964
).
8.
G. K.
Wertheim
and
R. H.
Herber
,
J. Am. Chem. Soc.
84
,
2274
(
1962
).
9.
G. K.
Wertheim
,
W. R.
Kingston
, and
R. H.
Herber
,
J. Chem. Phys.
37
,
687
(
1962
).
10.
G. K.
Wertheim
and
R. H.
Herber
,
J. Chem. Phys.
38
,
2106
(
1963
).
11.
R. L.
Collins
and
R.
Pettit
,
J. Am. Chem. Soc.
85
,
2332
(
1963
).
12.
R. L.
Collins
and
R.
Pettit
,
Rev. Mod. Phys.
36
,
461
(
1964
).
13.
V. A.
Bryukhanov
,
V. I.
Goldanskii
,
N. N.
Delyagin
,
E. F.
Makarov
, and
V. S.
Shpinel
,
Soviet Phys.‐JETP
15
,
443
(
1962
)
[
V. A.
Bryukhanov
,
V. I.
Goldanskii
,
N. N.
Delyagin
,
E. F.
Makarov
, and
V. S.
Shpinel
,
Zh. Eksperim. i Teor. Fiz.
42
,
637
(
1962
)].
V. A.
Bryukhanov
,
V. I.
Goldanskii
,
N. N.
Delyagin
,
L. A.
Korytko
,
E. F.
Makarov
,
I. P.
Susdalev
, and
V. S.
Shpinel
,
Soviet Phys.‐JETP
16
,
321
(
1963
)
[
V. A.
Bryukhanov
,
V. I.
Goldanskii
,
N. N.
Delyagin
,
L. A.
Korytko
,
E. F.
Makarov
,
I. P.
Susdalev
, and
V. S.
Shpinel
,
Zh. Eksperim. i Teor. Fiz.
43
,
448
(
1962
)].
14.
For a bibliography through August 1963, see Goldanskii, Ref. 4. A more concise bibliographic compilation has been assembled by A. H. Muir and K. J. Ando [Mössbauer Eject Data Index (North American Aviation Science Center)], of which a revised edition is in press, and can be obtained from these authors.
15.
V. I.
Goldanskii
,
G. M.
Gorodinsky
,
S. V.
Karyagin
,
L. A.
Korytko
,
L. M.
Krizhansky
,
E. F.
Makarov
,
I. P.
Suzdalev
, and
V. V.
Khrapov
,
Dokl. Akad. Nauk SSSR
147
,
127
(
1962
).
16.
See for example: G. K. Wertheim, An Introduction to the Mössbauer Effect (Academic Press Inc., New York, 1964), Chap. 2 (Instrumentation);
J. Appl. Phys.
32
,
1105
(
1961
); see also Refs. 7–9.
17.
We are indebted to E. I. Becker, G. J. M. van der Kerk, and W. Considine for generous gifts of a number of the organo‐tin compounds used in this study.
18.
We are indebted to J. R. Saldick, the AMF Corporation, and the American Tobacco Company for generously providing us with these facilities.
19.
R. S.
Preston
,
S. S.
Hanna
, and
T.
Heberle
,
Phys. Rev.
128
,
2207
(
1962
);
see also the NMR data of
Budnick
et al.,
J. Appl. Phys.
32
,
1205
(
1961
).
20.
W. Reichle (to be published).
21.
E.
Little
and
H.
Jones
,
J. Chem. Educ.
37
,
231
(
1960
);
see also F. A. Cotton and G. Wilkinson, Inorganic Chemistry (Interscience Publishers, Inc., New York, 1962), p. 92.
22.
J.
Hinze
,
M. A.
Whitehead
, and
H. H.
Jaffe
,
J. Am. Chem. Soc.
85
,
148
(
1963
).
23.
M.
Cordey‐Hayes
,
J. Inorg. Nucl. Chem.
26
,
915
(
1964
);
see also
A. J. F.
Boyle
,
D. St. P.
Bunbury
, and
C.
Edwards
,
Proc. Phys. Soc. (London)
79
,
416
(
1962
)
and B. Kistner, V. Jaccarino, and L. Walker, Proc. Intern. Conf. Mössbauer Effect, 2nd, Saclay, France, 1961 (1962).
24.
R.
Hoppe
and
W.
Daehne
,
Naturwiss.
49
,
254
(
1962
).
25.
V. I.
Goldanskii
,
E. F.
Makarov
,
R. A.
Stukan
,
T. N.
Sumarokova
,
V. A.
Truktanov
, and
V. V.
Khrapov
,
Dokl. Akad. Nauk SSSR
156
,
355
(
1964
);
V. I. Goldanskii (personal communication).
26.
A. J. F.
Boyle
,
D. St. P.
Bunbury
, and
C.
Edwards
,
Proc. Phys. Soc. (London)
79
,
416
(
1962
).
27.
It is interesting to note that the lattice site symmetry which is involved in this discussion is that associated with the spatial distribution of electron density and is not necessarily identical to the symmetry associated with the chemical identity of the nearest‐neighbor environment. Typical cases in point are the resonance spectra of [(para‐C6H4F)3Sn]2,[(meta‐C6H4CF3)3Sn]2,[(C6H5)3Sn]2,[(para‐C6H4Cl)3Sn]2, and perhaps most surprisingly, (para‐C6H4F)3SnH, none of which show any evidence for quadrupole splitting, despite the fact that the “chemical” symmetry around the Sn atom is less than tetrahedral. The absence of observable Q.S. must be taken as prima facie evidence of a tetrahedral or octahedral symmetry of electron density about the Sn.
28.
Implied in this discussion is the fact that all I.S. values as normally reported pertain to a source of particular chemical identity. Chemically different sources will show different shifts from zero velocity for a given absorber, but conversions from one source to another can be made empirically. All I.S. here reported pertain to an SnO2 source.
29.
H. C. Clark, R. J. O’Brien, and J. Trotter, Proc. Chem. Soc. 1963, 85.
30.
H.
Kriegsmann
and
S.
Pischtschan
,
Z. Anorg. Allgem. Chem.
306
,
212
(
1961
).
31.
H.
Kriegsmann
,
H.
Hoffmann
, and
S.
Pischtschan
,
Z. Anorg. Allgem. Chem.
315
,
283
(
1962
).
32.
R.
Okawara
and
K.
Yasuda
,
J. Organomet. Chem.
1
,
356
(
1964
).
33.
R.
Okawara
and
M.
Ohara
,
J. Organomet. Chem.
1
,
360
(
1964
).
34.
H. C.
Clark
and
R. J.
O’Brien
,
Inorg. Chem.
2
,
740
(
1963
).
35.
B. J. Hathaway and D. E. Webster, Proc. Chem. Soc. 1963, 14.
36.
I. R. Beattie, G. P. McQuillan, and R. Hulme, Chem. Ind. (London) 1962, 1429.
37.
R. Hulme, J. Chem. Soc. 1963, 1524.
38.
M. J.
Janssen
,
J. G. A.
Luitjen
, and
G. T. M.
van der Kerk
,
Rec. Trav. Chim.
81
,
202
(
1962
);
M. J.
Janssen
,
J. G. A.
Luitjen
, and
G. T. M.
van der Kerk
,
J. Organomet. Chem.
1
,
286
(
1964
).
39.
Reference 4 cites a semiempirical calculation by E. F. Makarov and O. V. Rostovskii in which the isomer shift and quadrupole splitting are related explicitly to ionic character and bond hybridization.
40.
V. I. Goldanskii (private communication).
41.
W. T.
Reichle
,
J. Polymer Sci.
49
,
521
(
1961
).
42.
W. T.
Reichle
,
J. Org. Chem.
26
,
4634
(
1961
).
43.
L. M. Epstein (to be published). The authors are indebted to Epstein for access to these data prior to publication.
44.
A case in point is the structure of R2SnNO3 which was studied by Clark and O’Brien (Ref. 33) who concluded that the R3Sn moiety is not planar, although the possibility that the nitrate groups is bidentate was not rigorously excluded.
This content is only available via PDF.
You do not currently have access to this content.