The partial differential cross sections for inelastic scattering of neutrons from samples of cold gaseous methane (T=125°K), liquid methane (T=99°K), and solid methane (T=83°K) were measured with the materials testing reactor (MTR) phased chopper velocity selector. These results are compared to the theory reported by Griffing for methane gas, which fits the cold‐gas data very well over the entire range of the experiment and also fits the liquid and solid data at the large momentum transfers. The results of these comparisons indicate that the rotations are free in all three phases and that, in the liquid and solid phases, there are oscillations of the center of mass of the molecule with dominant transitions having an energy change near 0.017 eV. The range of agreement of the gas theory with the liquid and solid data indicates that the liquid and solid act according to the gas model out to a time of roughly 5×10−13 sec. The similarity of the liquid and solid data over the range of the experiment suggest further that they act similarly out to even longer times.

The zeroth and first moments of energy transfer were calculated and for the gas compare favorably with a molecular theory which treats the rotations classically. For the liquid and solid data, the moments give further indications of the molecular oscillations.

1.
P. D.
Randolph
,
R. M.
Brugger
,
K. A.
Strong
, and
R. E.
Schmunk
,
Phys. Rev.
124
,
460
(
1961
).
2.
G. W. Griffing, Proceedings of the Chalk River Symposium on Inelastic Scattering of Neutrons in Solids and Liquids (International Atomic Energy Agency, Vienna, 1963), Vol. 1, p. 435.
3.
Possible vibration‐rotation interactions have been observed for energy changes greater than 0.06 eV. See
R. M.
Brugger
,
V. S.
Rainey
, and
H. L.
McMurry
,
Phys. Rev.
136
,
A106
(
1964
).
4.
Z.
Rogalska
,
Physica
29
,
491
(
1963
).
5.
W. L.
Whittemore
,
Nucl. Sci. Engr.
18
,
182
(
1964
).
6.
S. Hautecler and H. Stiller, Ref. 2, p. 423.
7.
G. E.
Ewing
,
J. Chem. Phys.
40
,
179
(
1964
).
8.
H. Stiller and S. Hautecler, Ref. 2, Vol. 2, p. 281.
9.
J. H.
Colwell
,
E. K.
Gill
, and
J. A.
Morrison
,
J. Chem. Phys.
39
,
635
(
1963
).
10.
R. M.
Brugger
and
J. E.
Evans
,
Nucl. Instr. Methods
12
,
75
(
1961
).
11.
K. A.
Strong
,
G. D.
Marshall
,
R. M.
Brugger
, and
P. D.
Randolph
,
Phys. Rev.
125
,
933
(
1962
).
12.
R. M.
Brugger
,
Phys. Rev.
126
,
29
(
1962
).
13.
R. M. Brugger, IDO‐16699 (Rev.) July 1962. This report is also designated as TID‐4500 (17 Ed.), TNCC‐US‐21(Rev.) and EANDC‐US‐25.
14.
P. D.
Randolph
,
Phys. Rev.
134
,
A1238
(
1964
).
15.
R. E.
Schmunk
,
Phys. Rev.
136
,
A1303
(
1964
).
16.
E.
Melkonian
,
Phys. Rev.
76
,
1750
(
1949
).
17.
A. G. Worthing and J. Geffner, Treatment of Experimental Data (John Wiley & Sons, Inc., New York, 1950), p. 189.
18.
G. W.
Griffing
,
Phys. Rev.
136
,
A988
(
1964
).
a Note added in proof: As stated, the liquid and solid data were normalized to measured total cross sections. Then it was found necessary to normalize the gas theory by 0.87 to fit the magnitude of the liquid scattering law data and by 0.82 to fit the solid data. Because of the uncertainty in integrating the σ(E0,E,θ) curves at the large energy transfers, the normalization to total cross section may be in error by 20%, and this may be the reason for the difference in magnitude between the gas theory and the data.
19.
M.
Sakamoto
,
B. N.
Brockhouse
,
R. G.
Johnson
, and
N. K.
Pope
,
J. Phys. Soc. Japan
17
, Suppl. BII,
370
(
1962
).
20.
H. L. McMurry and R. C. Young (private communication).
21.
L.
Van Hove
,
Phys. Rev.
95
,
249
(
1954
).
22.
G. H.
Vineyard
,
Phys. Rev.
110
,
999
(
1958
).
23.
Y. D. Harker and R. M. Brugger, IDO‐17044 (to be published).
24.
P. A. Egelstaff, Proceedings of the Vienna Symposium on Inelastic Scattering of Neutrons in Solids and Liquids (International Atomic Energy Agency, Vienna, 1961), p. 25.
25.
G.
Placzek
,
Phys. Rev.
86
,
377
(
1952
).
26.
P. D.
deGennes
,
Physica
25
,
825
(
1959
).
27.
A.
Rahman
,
K. S.
Singwi
, and
A.
Sjolander
,
Phys. Rev.
125
,
986
(
1962
).
28.
R. G.
Sachs
and
E.
Teller
,
Phys. Rev.
60
,
18
(
1941
).
This content is only available via PDF.
You do not currently have access to this content.