Gas‐phase 19F NMR spectra at 56.4 Mc/sec are presented for ClF3 over a range of partial pressures (300–1300 mm) extending to sufficiently low values that the shielding and spin—spin coupling constants found can be regarded as true molecular quantities. These are, for the AB2‐type spectrum, Small systematic relaxation effects in the multiplet splittings were identified and eliminated by graphical procedures.
NMR data are also given for ClF3 as a liquid and as a solute in CCl4 and CCl3F. While these spectra are similar enough to that of the gas to indicate that the T structure persists in all these phases, there are clear trends in σB and J for the sequence: gas, liquid solutions, pure liquid. These trends may result from the existence in the condensed phases of local structure similar to that found in the crystal.
Other chemical shifts (σ—σr) / (1—σr) measured for gases at low densities relative to SiF4(g) at 27°C are, in parts per million: ClF, 273.73; BF3, —36.11; CF4, —104.19; CCl3F, —167.60; ClF3(A), —187.32; ClF3(B), —313.24; ClO2F(?), —499.87; all with an experimental uncertainty of about ±0.10.
REFERENCES
1.
2.
E. L.
Muetterties
and W. D.
Phillips
, J. Am. Chem. Soc.
79
, 322
(1957
).3.
4.
A. N. Hamer, J. Leese, and P. G. Bentley, United Kingdom Atomic Energy Authority, Industrial Group, IGR‐TN/CA‐1048.
See also
Chem. Abstr.
53
, 15772f
(1959
).5.
R. N. Haszeldine and A. G. Sharpe, Fluorine (Methuen and Company, London, 1951);
6.
7.
8.
9.
10.
L. G.
Alexakos
and C. D.
Cornwell
, J. Chem. Phys.
39
, 1616
(1963
). A sample spectrum is reproduced in this reference.11.
A. A. Banks and A. J. Rudge, J. Chem. Soc. 1950, 191.
12.
(a)
E. A.
Jones
, T. F.
Parkinson
, and T. G.
Burke
, J. Chem. Phys.
18
, 235
(1950
).13.
H. H.
Claassen
, B.
Weinstock
, and J. G.
Malm
, J. Chem. Phys.
28
, 285
(1958
).14.
15.
J. A. Pople, W. G. Schneider, and H. J. Bernstein, High‐Resolution Nuclear Magnetic Resonance (McGraw‐Hill Book Company, Inc., New York, 1959).
16.
17.
G. W.
Flynn
and J. D.
Baldeschwieler
, J. Chem. Phys.
37
, 2907
(1962
).18.
19.
C. D. Cornwell, unpublished work. A similar equation but with different numerical coefficients has been given by Flynn and Baldeschwieler (Ref. 17).
20.
(b) W. A. Anderson, ibid., p. 151.
21.
R. L. Farrar, Jr., “Safe Handling of Chlorine Trifluoride and the Chemistry of the Chlorine Oxides and Oxyfluorides” Report No. K‐1416, Office of Technical Services, U.S. Department of Commerce, Washington, D.C.
22.
R. C. West (private discussion).
23.
The usual cylinder correction is also applicable for each sample in a coaxial cylindrical arrangement, provided one averages over the angle of rotation about the cylinder axis. One may see this from Eqs. (6)–(9) of
J. R.
Zimmerman
and M. R.
Foster
, J. Phys. Chem.
61
, 282
(1957
).24.
(a)
M. T.
Rogers
, M. B.
Panish
, and J. L.
Speirs
, J. Am. Chem. Soc.
77
, 5292
(1955
), specific susceptibility.(b)
M. T.
Rogers
, H. B.
Thompson
, and J. L.
Speirs
, J. Am. Chem. Soc.
76
, 4841
(1954
), density.25.
(b)
H. S.
Gutowsky
, D. W.
McCall
, and C. P.
Slichter
, J. Chem. Phys.
21
, 279
(1953
). , J. Chem. Phys.
(c)
M.
Karplus
and T. P.
Das
, J. Chem. Phys.
34
, 1683
(1961
)., J. Chem. Phys.
26.
27.
A. D.
Buckingham
, T.
Schaefer
, and W. G.
Schneider
, J. Chem. Phys.
32
, 1227
(1960
).28.
W. T.
Raynes
, A. D.
Buckingham
, and H. J.
Bernstein
, J. Chem. Phys.
36
, 3481
(1962
).29.
30.
We are indebted to the referee for a suggestion which prompted us to include a discussion of this case.
31.
This content is only available via PDF.
© 1964 American Institute of Physics.
1964
American Institute of Physics
You do not currently have access to this content.