When a nucleus in a dielectric solid occupies a lattice site which lacks inversion symmetry, the application of an external electric field causes a change in the electric field gradient at this nucleus. The magnitude of the change is proportional to the applied field. When the nucleus has spin greater than one‐half and possesses a nonzero quadrupole moment, the quadrupole interaction energy is, therefore, a linear function of the applied field. This field gradient perturbation is discussed phenomenologically through the use of a third rank tensor R which relates the electric field and the electric field gradient via the equation eΔq=R·E. Changes in the quadrupole interaction energy, observed as broadenings of nuclear quadrupole resonance lines in zero magnetic field, have been obtained for 35Cl, 81Br, and 127I nuclei in halogenated polycrystalline compounds including several halogenated methanes and benzenes, the solid halogens, and iodic acid. Broadened line shapes, local electric field corrections, and restrictions imposed by nuclear site symmetries are discussed. All observations are consistent with the phenomenological theory.

1.
N.
Bloembergen
,
Science
133
,
1363
(
1961
).
2.
T.
Kushida
and
K.
Saiki
,
Phys. Rev. Letters
7
,
9
(
1961
).
3.
J.
Armstrong
,
N.
Bloembergen
, and
D.
Gill
,
Phys. Rev. Letters
7
,
11
(
1961
).
4.
J.
Armstrong
,
N.
Bloembergen
, and
D.
Gill
,
J. Chem. Phys.
35
,
1132
(
1961
).
5.
N.
Bloembergen
,
J. Chem. Phys.
35
,
1131
(
1961
).
6.
D.
Gill
and
N.
Bloembergen
,
Phys. Rev.
129
,
2398
(
1963
).
7.
F. A.
Collins
and
N.
Bloembergen
,
J. Chem. Phys.
40
,
3479
(
1964
).
8.
R. W.
Dixon
and
N.
Bloembergen
,
Bull. Am. Phys. Soc.
8
,
350
(
1963
);
thesis, Harvard University (unpublished);
and Phys. Rev. (to be published).
9.
R. W.
Dixon
,
Bull. Am. Phys. Soc.
8
,
350
(
1963
);
N.
Bloembergen
,
Proc. Colloq. AMPERE
11
(
1962
),
39 (1963)
10.
J.
Duchesne
,
M.
Read
, and
P.
Cornil
,
J. Phys. Chem. Solids
24
,
1333
(
1963
);
M.
Read
,
P.
Cornil
, and
J.
Duchesne
,
Compt. Rend.
256
,
5331
(
1963
).
11.
N. F. Ramsey, Nuclear Moments (John Wiley & Sons, Inc., New York, 1953), p. 8.
12.
See, however,
T. C.
Wang
,
Phys. Rev.
99
,
566
(
1955
) where some evidence for slight hexadecapole interactions in nuclear quadrupole resonance in solids is presented.
13.
N. F. Ramsey, Molecular Beams (Clarendon Press, Oxford, England, 1956).
14.
H. B. G.
Casmir
,
Teyler’s Tweede Genootschap Haarlem
11
,
36
(
1936
).
15.
R. V.
Pound
,
Phys. Rev.
79
,
685
(
1950
).
16.
See, e.g., C. H. Townes, Handbuch der Physik (Julius Springer‐Verlag, Berlin, 1958), Vol. 38/1, pp. 377–453.
17.
T. P. Das and E. L. Hahn, Solid State Phys. 1, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1958).
18.
M. H.
Cohen
and
F.
Reif
,
Solid State Phys.
5
,
321
438
(
1956
).
19.
J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, England, 1960), p. 296 ff.
20.
C. P. Slichter, Principles of Magnetic Resonance (Harper and Row, New York, 1963), p. 162.
21.
R. J.
Harrison
and
P. L.
Sagalyn
,
Phys. Rev.
128
,
1630
(
1962
).
22.
R. G.
Shulman
,
B. J.
Wyluda
, and
P. W.
Anderson
,
Phys. Rev.
107
,
953
(
1957
).
23.
E. F.
Taylor
and
N.
Bloembergen
,
Phys. Rev.
113
,
431
(
1959
).
24.
T.
Kushida
,
G.
Benedek
, and
N.
Bloembergen
,
Phys. Rev.
104
,
1364
(
1956
).
25.
See, e.g., Ref. 18, p. 315
and C. Kittel, Solid State Physics (John Wiley & Sons, Inc., New York, 1956), 2nd ed., p. 162 ff.
26.
C.
Dean
,
Phys. Rev.
96
,
1053
(
1954
);
and thesis, Harvard University, Cambridge, Massachusetts, 1952 (unpublished).
27.
G. D. Watkins, thesis, Harvard University, Cambridge, Massachusetts, 1952 (unpublished).
28.
See, e.g., R. W. Landee, D. C. Davis, and A. P. Albrecht, Electronic Designers Handbook (McGraw‐Hill Book Company, Inc., New York, 1957), pp. 6–11.
29.
P. A.
Bender
,
D. A.
Jennings
, and
W. H.
Tantilla
,
J. Chem. Phys.
32
,
499
(
1960
).
30.
M. J.
Weber
,
J. Phys. Chem. Solids
17
,
267
(
1961
).
31.
J.
Jeener
,
Rev. Sci. Instr.
32
,
27
(
1961
).
32.
A. L.
Schawlow
,
J. Chem. Phys.
22
,
1211
(
1954
).
33.
S.
Kojima
,
A.
Shimanchi
,
S.
Hagiwava
, and
Y.
Abe
,
J. Phys. Soc. Japan
10
,
930
(
1955
).
34.
See, e.g., C. Kittel, Ref. 25, p. 482.
35.
V.
Croatlo
,
S.
Bezzi
, and
E.
Bua
,
Acta Cryst.
5
,
825
(
1952
).
36.
Reference 17, p. 98 ff.
37.
D. C.
Douglass
,
J. Chem. Phys.
31
,
504
(
1960
).
38.
A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, England, 1961), p. 252.
39.
G.
Ludwig
,
J. Chem. Phys.
25
,
159
(
1956
).
40.
R.
Livingston
and
H.
Zeldes
,
J. Chem. Phys.
26
,
351
(
1957
).
41.
W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950), p. 223.
42.
R.
Bersohn
,
J. Chem. Phys.
36
,
3445
(
1962
).
43.
K. W. H. Stevens, Tech. Rept. No. 197, Cruft Laboratory, Harvard University (unpublished).
44.
H. G.
Robinson
,
H. G.
Dehmelt
, and
W.
Gordy
,
J. Chem. Phys.
22
,
511
(
1954
).
This content is only available via PDF.
You do not currently have access to this content.