A set of empirical atomic radii has been set up, such that the sum of the radii of two atoms forming a bond in a crystal or molecule gives an approximate value of the internuclear distance. These radii give fair agreement with experiment in over 1200 cases of bonds in all types of crystals and molecules, with an average deviation of about 0.12 Å. The radii are similar to a set suggested by W. L. Bragg in 1920, but refined by consideration of many more crystals. They hold for covalent, metallic, and ionic binding equally well. These radii agree remarkably well with calculated radii of maximum radial charge density in the outermost shells of the atoms, as taken from previously unpublished calculations of D. Liberman, J. T. Waber, and D. T. Cromer, of the Los Alamos Laboratory, by relativistic self‐consistent field calculation, using the exchange correction suggested in 1951 by the present author. There is discussion of the probable reason for this agreement, and discussion of the relation of these radii to the ionic radii of Pauling, Zachariasen, and others, and the tetrahedral and metallic radii of Pauling.

1.
W. L.
Bragg
,
Phil. Mag.
40
,
169
(
1920
).
For a general account of different types of atomic and ionic radii, see L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd ed. See particularly Chaps. 7, 11, 13.
2.
J. C. Slater, Quantum Theory of Molecules and Solids (McGraw‐Hill Book Company, Inc., New York, to be published), Vol. 2.
The same information is contained in the contribution of the author entitled Empirical Atomic Radii from Crystal Structures, in Quarterly Progress Report No. 46, Solid‐State and Molecular Theory Group, MIT, October 1962, p. 6 (unpublished).
3.
R. W. G. Wyckoff, The Structure of Crystals (Chemical Catalog Company, New York, 1924), p. 399;
M. L.
Huggins
,
Phys. Rev.
28
,
1086
(
1926
).
4.
A.
Landé
,
Z. Physik
1
,
191
(
1920
);
K.
Fajans
and
H.
Grimm
,
Z. Physik
2
,
299
(
1920
);
K. Fajans and K. F. Herzfeld, ibid., p. 309.
5.
J. A. Wasastjerne, Soc. Sci. Fennica Comm. Phys.‐Maht. 381 (1923);
V. M. Goldschmidt, Skrifter Norkse Videnskaps‐Akad. Oslo I: Mat.‐Naturv. Kl., 1926;
Z. Tech. Physik
8.7
,
251
(
1927
);
Trans. Faraday Soc.
25
,
253
(
1929
);
L.
Pauling
,
Proc. Roy. Soc. (London)
A114
,
181
(
1927
);
L.
Pauling
and
J.
Sherman
,
Z. Krist.
81
,
1
(
1932
);
W. H.
Zachariasen
,
Z. Krist.
80
,
137
(
1931
).,
Z. Kristallogr.
6.
M. L. Huggins, Ref. 3;
L.
Pauling
and
M. L.
Huggins
,
Z. Krist.
87
,
205
(
1934
).
7.
D. Liberman, J. T. Waber, and D. T. Cromer, 1964 (unpublished).
8.
J. C.
Slater
,
Phys. Rev.
81
,
385
(
1951
).
9.
F. Herman and S. Skillman, Atomic Structure Calculations (Prentice‐Hall Inc., Englewood Cliffs, New Jersey, 1963).
10.
P.‐O.
Löwdin
,
Arkiv Mat. Astron. Fysik
A35
, Nos.
9
,
30
(
1947
);
P.‐O.
Löwdin
,
Advan. Phys.
5
,
1
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.