The O2–O2+ bond energy has been determined to be 0.42 eV from the temperature variation of the equilibrium constant for the reaction: O2+O2+=O4+. The rotational entropy of the O4+ by the ``loose'' cluster model, in which 6 rotational degrees of freedom are assumed, appears to be too large for the observed entropy change, ΔS293°= —20.6 e.u. Approximately half of the bond energy can be ascribed to a simple ion‐induced dipole interaction if account is taken of the variation in field strength over the O2 molecule by use of a very simple model. The explanation for the residual bond energy discrepancy might be that the polarizability of O2 is larger than the low‐field experimental value at high field strengths such as those ∼3 Å from an ion. The experimental method described is of wide applicability in determining bond energies in ion clusters.

1.
D. P.
Stevenson
and
D. O.
Schissler
,
J. Chem. Phys.
29
,
282
(
1958
).
2.
F. H.
Field
and
F. W.
Lampe
,
J. Am. Chem. Soc.
80
,
5587
(
1958
).
3.
M.
Burton
and
J. L.
Magee
,
J. Phys. Chem.
56
,
842
(
1952
).
4.
S. C. Lind, The Chemical Effects of Alpha Particles and Electrons (Chemical Catalog Company, New York, 1928);
Trans. Am. Electrochem. Soc.
44
,
63
(
1923
).
5.
A.
Streitwieser
, Jr.
and
H. R.
Ward
,
J. Am. Chem. Soc.
85
,
539
(
1963
).
6.
D. C.
Conway
,
J. Chem. Phys.
36
,
2549
(
1962
).
7.
H.
Eyring
,
J. O.
Hirschfelder
, and
H. S.
Taylor
,
J. Chem. Phys.
4
,
479
(
1936
).
8.
(a)
H.
Eyring
,
J. Chem. Phys.
7
,
792
(
1939
);
(b)
W. F.
Libby
,
J. Chem. Phys.
35
,
1714
(
1961
); and others.
9.
J. L.
Magee
and
K.
Funabashi
,
Rad. Res.
10
,
622
(
1959
).
10.
R. N.
Varney
,
J. Chem. Phys.
31
,
1314
(
1959
);
R. N.
Varney
,
33
,
1709
(
1960
).,
J. Chem. Phys.
11.
H. H. Landolt and R. Börnstein, Zahlenwerte und Funktionen (Springer‐Verlag, Berlin, 1951), Vol. I, Part 3, pp. 510 ff.
12.
T. L. Cottrell, The Strengths of Chemical Bonds (Butterworths Scientific Publications, Ltd., London, 1958), p. 278.
13.
R. L. F.
Boyd
and
D.
Morris
,
Proc. Phys. Soc. (London)
A68
,
1
(
1955
).
14.
M. G. Inghram and R. J. Hayden, Mass Spectroscopy, Nuclear Science Series Report No. 14 (National Academy of Sciences, Washington, D.C., 1954).
15.
P. F.
Knewstubb
,
P. H.
Dawson
, and
A. W.
Tickner
,
J. Chem. Phys.
38
,
1031
(
1963
).
16.
L. B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, 1961), pp. 191, 208.
17.
W. H.
Kasner
,
W. A.
Rogers
, and
M. A.
Biondi
,
Phys. Rev. Letters
7
,
321
(
1961
).
18.
The authors wish to thank Professor J. W. Cobble for pointing out this method. The ΔHo evaluated from the curve in Fig. 2 by assuming lang;ΔCPoAv is zero differs by only about 1%.
19.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), p. 1111.
20.
J. C.
Slater
,
Phys. Rev.
36
,
57
(
1930
).
21.
Reference 19, p. 168.
22.
Reference 19, pp. 955–960.
23.
Reference 19, pp. 951–954.
24.
Kindly provided in advance of publication by Professor J. W. Richardson, Purdue University.
25.
C. A.
Coulson
,
A.
MacColl
, and
L. E.
Sutton
,
Trans. Faraday Soc.
48
,
106
(
1952
).
26.
G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950), 2nd ed., Vol. I, pp. 384–385.
27.
M. S. B.
Munson
,
J. L.
Franklin
, and
F. H.
Field
,
J. Phys. Chem.
67
,
1542
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.