Measurements have been carried out over the temperature range 380°—525°K using a four‐cell hot‐wire thermal‐conductivity apparatus. At the lower temperatures the thermal conductivities of H2O and D2O are identical, but at the highest temperature the conductivity of D2O is larger by 8–9 parts per thousand. Conductivities of the equimolar mixtures lie midway between the conductivities of the pure components. Results are analyzed to test a recent hypothesis that a resonant exchange of rotational quanta causes the thermal conductivity of a polar gas to seem anomalously low in relation to its viscosity. It is concluded that the interchange of rotational energy between neighboring dipoles may be important, but that exact resonance is probably not required, at least in the case of water vapor.

1.
E. A.
Mason
and
L.
Monchick
,
J. Chem. Phys.
36
,
1622
(
1962
).
2.
C. S. Wang‐Chang and G. E. Uhlenbeck, University of Michigan Engineering Research Rept. No. CM‐681 (July 1951).
3.
N.
Taxman
,
Phys. Rev.
110
,
1235
(
1958
).
4.
S. Chapman and T. G. Cowling, The Mathematical Theory of Non‐Uniform Gases (Cambridge University Press, New York, 1952), p. 238.
5.
K.
Schäfer
,
Z. Physik. Chem.
B53
,
149
(
1943
).
6.
J. O.
Hirschfelder
,
J. Chem. Phys.
26
,
282
(
1957
).
7.
C.
O’Neal
, Jr.
and
R. S.
Brokaw
,
Phys. Fluids
5
,
567
(
1962
).
8.
R. S. Brokaw and C. O’Neal, Jr., Symp. Combust. 9th, Cornell Univ., 725 (1963).
9.
C.
O’Neal
, Jr.
and
R. S.
Brokaw
,
Phys. Fluids
6
,
1675
(
1963
).
10.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954).
11.
Reference 8, p. 721.
12.
N. B.
Vargaftik
and
L. S.
Zaitseva
,
Inzh.‐Fiz. Zh.
, Akad. Nauk Belorussk. SSR
6
, (
5
),
3
(
1963
).
13.
K. P. Coffin and C. O’Neal, Natl. Advisory Comm. Aeronaut. Tech. Note 4209, Washington, D.C., 1958.
14.
Reference 10, Eq. (8.2–32), p. 534.
15.
Reference 10, pp. 181, 1173–4.
16.
Helium viscosity:
J.
Kestin
and
W.
Leidenfrost
,
Physica
25
,
537
,
1033
(
1959
);
R.
Wobser
and
F.
Müller
,
Kolloid‐Beih.
52
,
165
(
1941
);
M.
Trautz
and
H. E.
Binkele
,
Ann. Physik
5
,
561
(
1930
);
M.
Trautz
and
I.
Husseini
,
Ann. Physik
20
,
121
(
1934
).
17.
Helium thermal conductivity:
L. S.
Zaitseva
,
Zh. Tekhn. Fiz.
29
,
497
(
1959
)
[English transl.:
L. S.
Zaitseva
,
Soviet Phys.‐Tech. Phys.
4
,
444
(
1959
)];
W. G.
Kannuluik
and
E. H.
Carman
,
Proc. Phys. Soc. (London)
B65
,
701
(
1952
);
H. L.
Johnston
and
E. R.
Grilly
,
J. Chem. Phys.
14
,
233
(
1946
).
18.
Argon viscosity: Kestin and Leidenfrost, Trautz and Binkele, Wobser and Müller, see Ref. 16;
A. G.
DeRocco
and
J. O.
Halford
,
J. Chem. Phys.
28
,
1152
(
1958
);
C. F.
Bonilla
,
S. J.
Wang
, and
H.
Weiner
,
Trans. ASME
78
,
1285
(
1956
);
T.
Makita
,
Rev. Phys. Chem. Japan
27
,
16
(
1957
).
19.
Argon thermal conductivity: Zaitseva, Kannuluik, and Carman, see Ref. 17;
K.
Schäfer
,
Dechema Monograph
32
,
61
(
1959
);
W. C.
Gardiner
and
K.
Schäfer
,
Z. Elektrochem.
60
,
588
(
1956
);
W. F.
Shottky
,
Z. Electrochem.
56
,
889
(
1952
);
L. A.
Bennett
and
R. G.
Vines
,
J. Chem. Phys.
23
,
1587
(
1955
);
R. G.
Vines
,
Australian J. Chem.
6
,
1
(
1953
);
A.
Michels
,
A.
Botzen
,
A. S.
Friedman
, and
J. V.
Sengers
,
Physica
26
,
121
(
1956
);
F. G.
Keyes
,
Trans. ASME
76
,
809
(
1954
).
20.
N. B.
Vargaftik
and
O. N.
Oleschuk
,
Izv. Vses. Teplotekh. Inst.
15
(
6
),
7
(
1946
).
21.
H.
Geier
and
K.
Schäfer
,
Allgem. Wärmetech.
10
,
70
(
1961
).
22.
Reference 10, Eq. (8.2–48), p. 540.
23.
L.
Monchick
and
E. A.
Mason
,
J. Chem. Phys.
35
,
1676
(
1961
).
24.
Reference 10, Eq. (8.2–36), p. 535.
This content is only available via PDF.
You do not currently have access to this content.