Potential energies were calculated for a series of methylated triarylborons considering interactions between all nonbonded atoms and pi‐electron resonance energies. All nonbonded interactions were estimated using modified Buckingham (exp‐six) potentials obtained from the literature; pi‐electron energies were calculated using simple molecular‐orbital theory. The resulting predictions of stable geometries were compared with those derived from proton magnetic‐resonance chemical shift data. All calculations were performed using a rigid geometric framework permitting only rotation of aryl groups. Reasonable agreement was found for several of the molecules studied; however, a number of discrepancies indicate certain inadequacies in the present treatment. In particular, future refinements must include the possibility of bond bending.

For tri‐1‐(2‐methylnaphthyl)boron, temperature dependence of the NMR spectra was indicative of rotational isomerism.

1.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954).
2.
G.
Wittig
and
W.
Herwig
,
Chem. Ber.
88
,
962
(
1955
).
3.
T. L.
Chu
and
T. J.
Weismann
,
J. Am. Chem. Soc.
78
,
23
,
3610
(
1956
).
4.
H. C.
Brown
and
V. H.
Dodson
,
J. Am. Chem. Soc.
79
,
2302
(
1957
).
5.
R. T.
Hawkins
,
W. J.
Lennarz
, and
H. R.
Snyder
,
J. Am. Chem. Soc.
82
,
3053
(
1960
).
6.
J. A. Pople, W. G. Schneider, and H. J. Bernstein, High‐Resolution Nuclear Magnetic Resonance (McGraw‐Hill Book Company, Inc., New York, 1959).
7.
L. S.
Bartell
,
J. Chem. Phys.
32
,
827
(
1960
).
8.
I.
Amdur
and
A. L.
Harkness
,
J. Chem. Phys.
22
,
664
(
1954
).
9.
T. L.
Hill
,
J. Chem. Phys.
16
,
399
(
1948
).
10.
J. O.
Hirschfelder
,
R. B.
Bird
, and
E. L.
Spotz
,
J. Chem. Phys.
16
,
968
(
1948
).
11.
E. A.
Mason
and
W. E.
Rice
,
J. Chem. Phys.
22
,
843
(
1954
).
12.
E. A.
Mason
and
J. T.
Vanderslice
,
J. Chem. Phys.
27
,
917
(
1957
).
13.
A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists (John Wiley & Sons, Inc., New York, 1961).
14.
E.
Krause
and
P.
Nobbe
,
Chem. Ber.
63
,
934
(
1930
).
15.
V.
Vesely
,
F.
Stursa
,
H.
Olejniček
, and
E.
Rein
,
Collection Czech. Chem. Comm.
2
,
145
(
1930
).
16.
A. A.
Bothner‐By
and
R. E.
Glick
,
J. Chem. Phys.
26
,
1651
(
1957
).
17.
D. E.
O’Reilly
and
H. P.
Leftin
,
J. Phys. Chem.
64
,
1555
(
1960
).
18.
H. C.
Brown
and
S.
Sujishi
,
J. Am. Chem. Soc.
70
,
2793
(
1948
).
19.
H. M.
McConnell
,
J. Chem. Phys.
27
,
226
(
1957
).
20.
J. S.
Waugh
and
R. W.
Fessenden
,
J. Am. Chem. Soc.
79
,
846
(
1957
);
see also
C. E.
Johnson
and
F. A.
Bovey
,
J. Chem. Phys.
29
,
1012
(
1958
).
21.
E. W.
Garbisch
,
J. Am. Chem. Soc.
85
,
927
(
1963
).
22.
N.
Jonathan
,
S.
Gordon
, and
B. P.
Dailey
,
J. Chem. Phys.
36
,
2443
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.