Since to form a hole the size of a molecule in a liquid requires almost the same increase in free energy as to vaporize a molecule, the concentration of vapor above the liquid is a measure of such ``molecular'' holes in the liquid. This provides an explanation of the law of rectilinear diameters of Cailletet and Mathias. The theory of reaction rates yields an equation for absolute viscosity applicable to cases involving activation energies where the usual theory of energy transfer does not apply. This equation reduces to a number of the successful empirical equations under the appropriate limiting conditions. The increase of viscosity with shearing stress is explained. The same theory yields an equation for the diffusion coefficient which when combined with the viscosity and applied to the results of Orr and Butler for the diffusion of heavy into light water gives a satisfactory and suggestive interpretation. The usual theories for diffusion coefficients and absolute electrical conductance should be replaced by those developed here when ion and solvent molecule are of about the same size.

1.
(a)
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
);
(b)
Evans
and
Polanyi
,
Trans. Faraday Soc.
21
,
875
(
1935
);
(c).
Wynne‐Jones
and
Eyring
,
J. Chem. Phys.
3
,
492
(
1935
).
2.
Wigner
,
Zeits. F. Physik. Chemie
B19
,
203
(
1932
).
3.
Eyring
,
Gershinowitz
and
Sun
,
J. Chem. Phys.
3
,
786
(
1935
).
4.
Schottky
,
Zeits. F. Physik. Chemie
B29
,
335
(
1935
).
5.
Bragg
and
Williams
,
Proc. Roy. Soc.
A145
,
699
(
1934
).
6.
Fowler
,
Proc. Roy. Soc.
A151
,
1
(
1935
);
Mott
,
Proc. Roy. Soc.
A146
,
465
(
1934
).
7.
Fowler
,
Proc. Roy. Soc.
A140
,
505
(
1933
);
Frenkel
,
Todes
and
Ismailow
,
Acta Physicochimica U.S.S.R.
1
,
97
(
1934
).
8.
Smyth
and
Hitchcock
,
J. Am. Chem. Soc.
54
,
4631
(
1932
).
In this sense even very large relaxation times have physical significance and may be employed serviceably in the interpretation of liquid‐vitreous and vitreous‐crystal transitions as Professor W. T. Richards points out in a paper soon to be published.
9.
Andrade
,
Phil. Mag.
17
,
497
,
698
(
1934
).
10.
Bridgman, The Physics of High Pressure (Macmillan), p. 356.
11.
Batschinski
,
Zeits. F. Physik. Chemie
84
,
643
(
1913
). See also Hatschek, The Viscosity of Liquids (G. Bell & Sons), Chapter V.
12.
J. C.
Maxwell
,
Phil. Mag.
35
,
133
(
1868
).
13.
Hatschek, The Viscosity of Liquids, Chapter XII.
14.
Adams
and
Williamson
,
J. Frank. Inst.
190
,
619
(
1920
);
Adams
,
J. Frank. Inst.
216
,
39
(
1933
).
15.
Hampton
,
Trans. Opt. Soc. London
27
,
173
(
1925–1926
).
16.
Polanyi
,
Zeits. F. Physik
89
,
660
(
1935
).
17.
W. G.
Burgers
and
J. M.
Burgers
,
Verh. Akad. Amsterdam
(
1
)
15
, Chapter V (
1935
).
18.
C.f. Herzfeld, Kinetische Theory der Wärme (Müller‐Pouillets Lehrbuch der Physik., 1925), Chapter VII.
19.
Orr and Butler, J. Chem. Soc. 1273 (1935).
This content is only available via PDF.
You do not currently have access to this content.