The Hückel theory, with an extended basis set consisting of 2s and 2p carbon and 1s hydrogen orbitals, with inclusion of overlap and all interactions, yields a good qualitative solution of most hydrocarbon conformational problems. Calculations have been performed within the same parametrization for nearly all simple saturated and unsaturated compounds, testing a variety of geometries for each. Barriers to internal rotation, ring conformations, and geometrical isomerism are among the topics treated. Consistent σ and π charge distributions and overlap populations are obtained for aromatics and their relative roles discussed. For alkanes and alkenes charge distributions are also presented. Failures include overemphasis on steric factors, which leads to some incorrect isomerization energies; also the failure to predict strain energies. It is stressed that the geometry of a molecule appears to be its most predictable quality.

1.
A. Streitwieser, Molecular Orbital Theory (John Wiley & Sons, Inc., New York, 1961). R. Daudel, R. Lefebvre, C. Moser, Quantum Chemistry (Interscience Publishers, Inc., New York, 1959). B. Pullman and A. Pullman, Les théories élecironiques de la chimie organique (Masson et Cie., Paris, 1952).
2.
(a)
G. G.
Hall
and
J.
Lennard‐Jones
,
Proc. Roy. Soc. (London)
A202
,
336
(
1950
);
G. G.
Hall
and
J.
Lennard‐Jones
,
205
,
357
,
541
(
1951
); ,
Proc. R. Soc. London
(b) R. D. Brown, J. Chem. Soc. 1953, 2615;
(c) M. J. S. Dewar and R. Petitt, ibid.1954, 1625;
(d)
C.
Sandorfy
,
Can. J. Chem.
33
,
1337
(
1955
);
(e)
K.
Fukui
,
H.
Kato
,
K.
Morokuma
,
A.
Imamura
, and
C.
Nagata
,
Bull. Chem. Soc. Japan
35
,
38
(
1962
) and references therein.
3.
A recent example of the consequences of this attitude may be seen in the work of
O.
Sovers
and
W.
Kauzmann
,
J. Chem. Phys.
38
,
813
(
1963
).
4.
H. A.
Skinner
and
H. O.
Pritchard
,
Trans. Faraday Soc.
49
,
1254
(
1953
);
H. O.
Pritchard
and
H. A.
Skinner
,
Chem. Rev.
55
,
745
(
1955
).
5.
R. S.
Mulliken
,
J. Chim. Phys.
46
,
497
,
675
(
1949
).
6.
M.
Wolfsberg
and
L.
Helmholtz
,
J. Chem. Phys.
20
,
837
(
1952
).
7.
R.
Hoffmann
and
W. N.
Lipscomb
, (a)
J. Chem. Phys.
36
,
2179
,
3489
(
1962
);
(b)
R.
Hoffmann
and
W. N.
Lipscomb
,
J. Chem. Phys.
37
,
2872
(
1962
).,
J. Chem. Phys.
8.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
,
1841
2338
,
2343
(
1955
).
9.
G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand, Inc., New York, 1959), Vol. II.
10.
The exceptions are some diatomics and triatomics for which this theory fails; for instance the obvious case of the ground state of the hydrogen molecule.
11.
For H2 the simplest LCAO and VB functions give a poor binding energy but an equilibrium separation within 10% of the correct value. Scaling, i.e., varying the Slater exponent, improves the energy somewhat and predicts the distance to 1% [see the review of H2 calculations in
A. D.
McLean
,
A.
Weiss
, and
M.
Yoshimine
,
Rev. Mod. Phys.
32
,
211
(
1960
)].
For F2 the best simple LCAO function gives the internuclear separation to 10%, but fails to predict binding [
B. T.
Ransil
,
Rev. Mod. Phys.
32
,
239
,
245
(
1960
)].
12.
(a) W. G. Dauben and K. S. Pitzer in Steric Effects in Organic Chemistry, edited by M. S. Newman (John Wiley & Sons, Inc., New York, 1956), p. 1;
(b)
E. B.
Wilson
, Jr.
,
Advan. Chem. Phys.
2
,
367
(
1959
);
(c)
D. J.
Millen
,
Progr. Stereochem.
3
,
138
(
1962
).
13.
In the minimization procedure the staggered form stabilized at a slightly shorter C‐C distance than the eclipsed.
14.
R. M. Pitzer (to be published).
15.
D. R.
Lide
,
J. Chem. Phys.
33
,
1514
(
1960
).
16.
E. L. Eliel, Stereochemistry of Carbon Compounds (McGraw‐Hill Book Company, Inc., New York, 1962).
17.
D. R.
Lide
,
J. Chem. Phys.
33
,
1519
(
1960
).
18.
F. R.
Jensen
,
D. S.
Noyce
,
C. H.
Sederholm
, and
A. J.
Berlin
,
J. Am. Chem. Soc.
84
,
386
(
1962
).
19.
F. V.
Brutcher
, Jr.
, and
W.
Bauer
, Jr.
,
J. Am. Chem. Soc.
84
,
2233
(
1962
).
20.
K. S.
Pitzer
and
W. E.
Donath
,
J. Am. Chem. Soc.
81
,
3213
(
1959
).
21.
R. S.
Berry
,
J. Chem. Phys.
38
,
1934
(
1963
).
22.
R. S.
Mulliken
and
C. C. J.
Roothaan
,
Chem. Rev.
41
,
219
(
1947
).
23.
D. R.
Herschbach
and
L. C.
Krisher
,
J. Chem. Phys.
28
,
728
(
1958
).
24.
R. G.
Parr
and
R. S.
Mulliken
,
J. Chem. Phys.
18
,
1338
(
1950
), obtained somewhat smaller estimates.
See also
O.
Polansky
,
Monatsh. Chem.
94
,
23
(
1963
).
25.
D. R.
Lide
and
D. E.
Mann
,
J. Chem. Phys.
27
,
874
(
1957
).
26.
D. R.
Lide
and
D. E.
Mann
,
J. Chem. Phys.
27
,
868
(
1957
).
27.
The acetylene wavefunction we obtain compares favorably with the SCF functions calculated by
A. D.
McLean
,
J. Chem. Phys.
32
,
1595
(
1960
)
[see also
A. D.
McLean
,
B. J.
Ransil
, and
R. S.
Mulliken
,
J. Chem. Phys.
32
,
1873
(
1960
)], ,
J. Chem. Phys.
and
L.
Burnelle
,
J. Chem. Phys.
35
,
311
(
1961
). Our orbital energies, in eV, are g−27.120,u−19.642,g−15.186,πu−13.533. The total C‐C overlap population is 1.93, of which 1.00 comes from the π orbitals. The charges and overlap population may be found in Table VII.,
J. Chem. Phys.
28.
M. P. Gouterman has suggested that a careful search for transitions arising from σ→π* excitations, and thus polarized perpendicular to the aromatic ring plane, would be useful in this respect. Our energy spectrum supports that given schematically by J. C. Slater, Quantum Theory of Molecules and Solids (McGraw‐Hill Book Company, Inc., New York, 1963), Vol. 1, p. 234.
29.
K.
Ruedenberg
,
J. Chem. Phys.
34
,
1878
(
1961
).
30.
R.
McWeeny
,
J. Chem. Phys.
19
,
1614
(
1951
).
31.
J.
Trotter
,
Acta Cryst.
14
,
1135
(
1961
).
32.
I. L.
Karle
and
L. O.
Brockway
,
J. Am. Chem. Soc.
66
,
1974
(
1944
);
O.
Bastiansen
,
Acta Chem. Scand.
3
,
408
(
1949
).
33.
C. A. Coulson, Conference on Quantum Mechanical Methods in Valence Theory, Shelter Island, New York, 1961, p. 42.
F. J.
Adrian
,
J. Chem. Phys.
28
,
608
(
1958
).
34.
E. Heilbronner in Nonbenzenoid Aromatic Compounds, edited by D. Ginsburg (Interscience Publishers, Inc., New York, 1959), p. 171.
35.
J. H.
Day
and
C.
Oestreich
,
J. Org. Chem.
22
,
214
(
1956
).
36.
A.
Magnus
,
H.
Hartmann
, and
F.
Becker
,
Z. Physik. Chem.
197
,
75
(
1951
).
37.
G. Ferguson and J. M. Robertson in Advances in Physical Organic Chemistry, edited by V. Gold (Academic Press Inc., New York, 1963), p. 203.
38.
See, however,
W. M.
Schubert
,
R. B.
Murphy
, and
J.
Robins
,
Tetrahedron
17
,
199
(
1962
).
39.
T. J.
Katz
and
M.
Rosenberger
,
J. Am. Chem. Soc.
84
,
865
(
1962
).
40.
H. L.
Strauss
and
G. K.
Fraenkel
,
J. Chem. Phys.
35
,
1738
(
1961
).
T. J.
Katz
and
H. L.
Strauss
,
J. Chem. Phys.
32
,
1873
(
1960
).,
J. Chem. Phys.
41.
Note that as usual with LCAO‐MO calculations, the wave‐ function does not have the correct behavior at infinity.
42.
It is interesting in this connection to note that in a calculation in which the Mulliken approximation was used for three‐ and four‐center integrals, the binding energy was also overestimated. (L. Burnelle, Ref. 27).
43.
L. L. Lohr, Jr., has used a similar expression Hij = K″Sij(HiiHjj)12 which differs from ours only in second order and has certain computational advantages.
L. L.
Lohr
, Jr.
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
1607
(
1963
).
T.
Jordan
,
H. W.
Smith
,
L. L.
Lohr
, Jr.
, and
W. N.
Lipscomb
,
J. Am. Chem. Soc.
85
,
846
(
1963
).
L. L. Lohr, Jr. and W. N. Lipscomb, ibid. p. 240.
See also
C. J.
Ballhausen
and
H. B.
Gray
,
Inorg. Chem.
1
,
111
(
1962
).
44.
J. C. Slater, Quantum Theory of Molecules and Solids (McGraw‐Hill Book Company, Inc., New York, 1963), Vol. I, p. 108.
This content is only available via PDF.
You do not currently have access to this content.