Mass spectrometric studies on the production, identification, and determination of thermochemical energies of HO2 radicals are reported. Reactions found to produce HO2 radicals, and examined in some detail, were: (1) reaction of H with O2, (2) reaction of H with H2O2, (3) reaction of O with H2O2, (4) reaction of OH with H2O2, (5) photolysis of H2O2, and (6) low‐power electrical discharge in H2O2. Of the reactions studied, the low‐power electrical discharge in H2O2 provided the most intense and convenient source of HO2 radicals. Ion—molecule reactions, which are negligible in normal operation of our mass spectrometer, are shown to be a potentially serious source of interference in studies of HO2 with conventional mass spectrometers.

The ionization potential of HO2, I(HO)2, and the appearance potential of HO2+ from H2O2, A(HO2+), have been redetermined, and the bond dissociation energies D(H–OOH) and D(H–O2) have been recalculated. The measured values are: I(HO2) = 11.53±0.02 ev, A(HO2+) = 15.36±0.05 ev with an estimated absolute accuracy of ±0.1 ev. The derived thermochemical energies are: D0(H–OOH) = 88.4±2 kcal/mole, D0(H–O2) = 45.9±2 kcal/mole, ΔH00(HO2) = 5.7±2 kcal/mole for the values at 0°K; and D(H–OOH) = 89.6±2 kcal/mole, D(H–O2) = 47.1±2 kcal/mole, ΔH2980 (H–O2) = 5.0±2 kcal/mole for the corresponding values at 25°C. Possible sources of error are examined and their effect on these values is discussed.

1.
A. L.
Marshall
,
J. Phys. Chem.
30
,
34
,
1078
(
1926
).
2.
See B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic Press Inc., New York, 1961), 2nd ed., Chap. 2,
and W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, Hydrogen Peroxide (Reinhold Publishing Corporation, New York, 1955), Chap. 2, for discussions of this reaction and other references.
3.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
21
,
1608
(
1953
).
4.
A. J. B. Robertson, Applied Mass Spectrometry (Institute of Petroleum, London, 1954), p. 112.
5.
K. U.
Ingold
and
W. A.
Bryce
,
J. Chem. Phys.
24
,
360
(
1956
).
6.
D. J. Fabian and W. A. Bryce, Seventh International Symposium on Combustion (Butterworths Scientific Publications, London, 1958), p. 150.
7.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
23
,
1364
(
1955
).
8.
P. A.
Giguère
,
J. Chem. Phys.
22
,
2085
(
1954
).
9.
R. B.
Tagirov
,
Zhur. Fiz. Khim.
30
,
949
(
1956
).
10.
P. A.
Giguère
and
K. B.
Harvey
,
J. Chem. Phys.
25
,
373
(
1956
).
11.
R.
Livingston
,
J.
Ghormley
, and
H.
Zeldes
,
J. Chem. Phys.
24
,
483
(
1956
).
12.
A. I.
Gorbanev
,
S. D.
Kaitmazov
,
A. M.
Prokhorov
, and
A. B.
Tsentsiper
,
Zhur. Fiz. Khim.
31
,
515
(
1957
).
13.
C. K.
Jen
,
S. N.
Foner
,
E. L.
Cochran
, and
V. A.
Bowers
,
Phys. Rev.
112
,
1169
(
1958
).
14.
S. D.
Kaitmazov
and
A. M.
Prokhorov
,
Zhur. Eksptl. i Teoret. Fiz.
36
,
1331
(
1959
).
15.
R. C.
Smith
and
S. J.
Wyard
,
Nature
186
,
226
(
1960
).
16.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
21
,
1374
(
1953
).
17.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
23
,
1974
(
1955
).
18.
P. E.
Charters
and
J. C.
Polanyi
,
Can. J. Chem.
38
,
1742
(
1960
).
19.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
25
,
601
(
1956
).
20.
J. T. Massey and S. M. Cannon (private communication).
21.
D. J.
Volman
,
J. Chem. Phys.
17
,
947
(
1949
).
22.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
28
,
719
(
1958
).
23.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
29
,
442
(
1959
).
24.
D. P.
Stevenson
and
D. O.
Schissler
,
J. Chem. Phys.
29
,
282
(
1958
).
25.
G.
Gioumousis
and
D. P.
Stevenson
,
J. Chem. Phys.
29
,
294
(
1958
).
26.
P.
Dông
and
M.
Cottin
,
J. Phys. Chim.
57
,
557
(
1960
).
27.
R. E.
Honig
,
J. Chem. Phys.
16
,
105
(
1948
).
28.
F. P.
Lossing
,
A. W.
Tickner
, and
W. A.
Bryce
,
J. Chem. Phys.
19
,
1254
(
1951
).
29.
V. H.
Dibeler
and
R. M.
Reese
,
J. Research Natl. Bur. Standards
54
,
127
(
1955
).
30.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
25
,
602
(
1956
).
31.
S. N.
Foner
,
A.
Kossiakoff
, and
F. T.
McClure
,
Phys. Rev.
74
,
1222
(
1948
).
32.
The error limit quoted is a measure of the precision of determination in several runs. An uncertainty of ±0.10 ev is our estimate of the absolute accuracy of ionization potential measurements by electron impact methods that do not use monoenergetic electron sources to resolve fine structure in the curves.
33.
D. P.
Stevenson
,
Discussions Faraday Soc.
10
,
35
(
1951
).
34.
P. A.
Giguère
and
I. D.
Liu
,
J. Am. Chem. Soc.
77
,
6477
(
1955
).
35.
Selected Values of Chemical Thermodynamic Properties (NBS Circ. 500, Washington, D.C., 1952).
36.
P.
Gray
,
Trans. Faraday Soc.
55
,
408
(
1959
).
37.
A. J. B.
Robertson
,
Trans. Faraday Soc.
48
,
228
(
1952
).
This content is only available via PDF.
You do not currently have access to this content.