Free volume vf is defined as that part of the thermal expansion, or excess volume Δ which can be redistributed without energy change. Assuming a Lennard‐Jones potential function for a molecule within its cage in the condensed phase, it can be shown that at small Δ considerable energy is required to redistribute the excess volume; however, at Δ considerably greater than some value δg (corresponding to potentials within the linear region), most of the volume added can be redistributed freely. The transition from glass to liquid may be associated with the introduction of appreciable free volume into the system. Free volume will be distributed at random within the amorphous phase and there is a contribution to the entropy from this randomness which is not present in the entropy of the crystalline phase. According to our model all liquids would become glasses at sufficiently low temperature if crystallization did not intervene. Therefore whether or not a glass forms is determined by the crystallization kinetic constants and the cooling rate of the liquid. The experience on the glass formation is consistent with the generalization: at a given level of cohesive energy the glass‐forming tendency of a substance in a particular class is greater the less is the ratio of the energy to the entropy of crystallization.

1.
D.
Turnbull
and
M. H.
Cohen
,
J. Chem. Phys.
29
,
1049
(
1958
).
2.
M. H.
Cohen
and
D.
Turnbull
,
J. Chem. Phys.
31
,
1164
(
1959
).
3.
The first developments of the free volume model of the liquid state are due to Eyring and associates [(a)
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
);
J. O.
Hirschfelder
,
D. P.
Stevenson
, and
H.
Eyring
,
J. Chem. Phys.
5
,
896
(
1937
)]
and to Lennard‐Jones and Devonshire [(b)
J. E.
Lennard‐Jones
and
A. F.
Devonshire
,
Proc. Roy. Soc. (London)
A163
,
53
(
1937
);
J. E.
Lennard‐Jones
and
A. F.
Devonshire
,
A169
,
317
(
1939
)]. The model has been further developed and applied in many subsequent investigations.,
Proc. R. Soc. London, Ser. A
4.
D. Turnbull and M. H. Cohen in Modern Aspects of the Vitreous State, edited by J. D. Mackenzie (Butterworths Scientific Publications, Ltd., London, 1960).
5.
W.
Kauzman
,
Chem. Rev.
43
,
219
(
1948
).
6.
J. H.
Gibbs
and
E. A.
DiMarzio
,
J. Chem. Phys.
28
,
373
(
1958
).
7.
T. G.
Fox
and
P. J.
Flory
,
J. Appl. Phys.
21
,
581
(
1950
);
T. G.
Fox
and
P. J.
Flory
,
J. Phys. Chem.
55
,
221
(
1951
);
T. G.
Fox
and
P. J.
Flory
,
J. Polymer Sci.
14
,
315
(
1954
).
8.
M. F.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
,
J. Am. Chem. Soc.
77
,
3701
(
1955
).
9.
A. K.
Doolittle
,
J. Appl. Phys.
22
,
1471
(
1951
).
10.
R. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, New York, 1952), p. 340.
(a) The entropy of randomization may be regarded as equivalent to, but perhaps more precisely defined than, the communal entropy discussed by other authors.3a, 15
(b) In the quantum fluids He3 and He4, crystallization does not intervene, the amorphous phase being stable at low temperatures and pressures. What is equivalent in these substances to the entropy of randomization disappears gradually in He3 and via a phase transformation in He4; however, the amorphous phase remains fluid down to the lowest temperatures because the structures are blown up by zero point kinetic‐energy so that no redistribution of free volume is required for flow.
11.
W. B.
Hillig
and
D.
Turnbull
,
J. Chem. Phys.
24
,
914
(
1956
).
12.
K. S.
Pitzer
,
J. Chem. Phys.
7
,
583
(
1939
).
13.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
14.
J.
DeBoer
,
Physica
14
,
139
(
1948
).
15.
I. Prigogine, The Molecular Theory of Solutions (North‐Holland Publishing Company, Amsterdam, 1957).
16.
G.
Cino‐Castognoli
,
G.
Pizzella
, and
F. P.
Ricci
,
Nuovo Cimento
11
,
466
(
1959
).
(a) See also
G.
Thomaes
and
J.
Van Itterbeek
,
Mol. Phys.
2
,
372
(
1959
).
17.
D.
Turnbull
,
J. Appl. Phys.
21
,
1022
(
1950
).
18.
D. G. Thomas and L. A. K. Stavely, J. Chem. Soc. 1952, 4569.
19.
H. J. De Nordwall and L. A. K. Stavely, J. Chem. Soc. 1954, 224.
20.
W. H.
Zachariasen
,
J. Am. Chem. Soc.
58
,
3841
(
1932
).
This content is only available via PDF.
You do not currently have access to this content.