A system of excess functions is developed for electrolyte solutions and other solutions with an essentially unsymmetrical solvent‐solute relation. These new functions vanish for a solution whose practical (molal scale) osmotic coefficient is unity at all compositions, temperatures and pressures. The use of these excess functions offers some advantages over other methods of comparing Mayer's ionic solution theory with experiment, of representing the properties of solutions of single or mixed electrolytes, and of making qualitative interpretations of the molecular basis of thermodynamic properties.

Graphs showing the ionic‐strength dependence of the excess free energy, excess enthalpy, excess entropy, and excess volume are given for several aqueous solutions of single electrolytes up to 6 molal. Experimental values of the cluster integral sum, the characteristic function of the Mayer theory, have also been calculated. The concentration dependence of this function is very similar to that of the excess free energy.

1.
G.
Scatchard
,
Chem. Revs.
8
,
321
(
1931
);
G.
Scatchard
,
44
,
7
(
1949
).,
Chem. Rev. (Washington, D.C.)
2.
G.
Scatchard
and
C.
Raymond
,
J. Am. Chem. Soc.
60
,
1278
(
1938
).
3.
I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans, Green and Company, Inc., New York, 1952).
4.
I. Prigogine, The Molecular Theory of Solutions (Interscience Publishers, Inc., New York, 1957).
5.
E. Guggenheim, Thermodynamics (Interscience Publishers, New York, 1957), 3rd ed.
6.
G.
Scatchard
and
S.
Prentiss
,
J. Am. Chem. Soc.
56
,
1486
(
1934
).
7.
G.
Scatchard
,
Chem. Revs.
19
,
309
(
1936
).
8.
R. Fowler, Statistical Mechanics (Cambridge University Press, New York, 1936), 2nd ed.
9.
R. Fowler and E. Guggenheim, Statistical Thermodynamics (Cambridge University Press, New York, 1952).
10.
H. L.
Friedman
and
R.
Schug
,
J. Am. Chem. Soc.
78
,
3881
(
1956
).
11.
H. L.
Friedman
,
Discussions Faraday Soc.
24
,
74
(
1957
).
11a A dictionary of the present nomenclature in relation to the more familiar Harned and Owen12 nomenclature is given in Appendix A. Note especially the distinction between the two m’s.
11b Script capitals are employed in this paper to represent extensive quantities.
12.
H. Harned and B. Owen, The Physical Chemistry of Electrolyte Solutions (Reinhold Publishing Corporation, New York, 1958), 3rd ed.
13.
R. Robinson and R. Stokes, Electrolyte Solutions (Butterworths Scientific Publications, Ltd., London, 1955).
14.
a
N.
Bjerrum
,
Z. physik. Chem. (Leipzig)
119
,
145
(
1926
).
14b
H.
Frank
and
R.
Robinson
,
J. Chem. Phys.
8
,
933
(
1940
).
15.
H.
Frank
,
J. Chem. Phys.
23
,
2023
(
1955
).
15a There is a smaller term arising from the contribution of (∂V/∂T)p, which is omitted in this discussion.
16.
W. G.
McMillan
and
J. E.
Mayer
,
J. Chem. Phys.
13
,
276
(
1945
).
17.
J. E.
Mayer
,
J. Chem. Phys.
18
,
1426
(
1950
).
18.
H. L.
Friedman
,
Mol. Phys.
2
,
23
(
1959
).
18a The function, 𝔖, does not appear in reference 16 explicitly, but it corresponds to S of reference 17, Eq. (18) and S of reference 18, Eq. (7). The designation 𝔖 is preferred to either of the others in thermodynamic treatments because 5 may be confused with the entropy and S implies16 a set.
18bP0 is generally neglected in the following derivation in order to simplify the equations. Usually, both Gex and the Bn correspond to P0 = 1 atm rather than P0 = 0, but the difference, as estimated directly by carrying P0 in the equations, is far smaller than the uncertainty in Gex from the best data available.
19.
R. M.
Diamond
,
J. Am. Chem. Soc.
80
,
4808
(
1958
).
20.
H.
Frank
and
M.
Evans
,
J. Chem. Phys.
13
,
504
(
1945
).
21.
H.
Frank
,
J. Chem. Phys.
13
,
478
,
493
(
1945
).
22.
E.
Glueckauf
,
Trans. Faraday Soc.
51
,
1235
(
1955
);
E.
Glueckauf
,
53
,
305
(
1957
).,
Trans. Faraday Soc.
23.
R. H.
Stokes
and
R.
Robinson
,
J. Am. Chem. Soc.
70
,
1870
(
1948
);
R. H.
Stokes
and
R.
Robinson
,
Trans. Faraday Soc.
53
,
301
(
1957
).
24.
E.
Glueckauf
,
H.
McKay
, and
A. R.
Matheson
,
Trans. Faraday Soc.
47
,
428
(
1951
).
25.
H. A. C.
McKay
,
Nature
169
,
464
(
1952
).
26.
T. F.
Young
and
M. B.
Smith
,
J. Phys. Chem.
58
,
716
(
1954
);
T. F.
Young
,
Y. C.
Wu
, and
A. A.
Krawetz
,
Discussions Faraday Soc.
24
,
37
(
1957
).
27.
H. A. C.
McKay
,
Discussions Faraday Soc.
24
,
76
(
1957
).
28.
J.
Poirier
,
J. Chem. Phys.
21
,
965
,
972
(
1953
).
29.
R. E.
Gibson
,
J. Am. Chem. Soc.
56
,
4
(
1934
).
30.
R. E.
Gibson
,
J. Am. Chem. Soc.
57
,
284
(
1935
).
31.
R. E.
Gibson
,
Sci. Monthly
46
,
103
(
1938
).
This content is only available via PDF.
You do not currently have access to this content.