We have derived, by using simple considerations, a relation between the diffusion constant D in a liquid of hard spheres and the ``free volume'' vf. This derivation is based on the concept that statistical redistribution of the free volume occasionally opens up voids large enough for diffusive displacement. The relation is D=A exp[−γv*/vf], where v* is the minimum required volume of the void and A and γ are constants. This equation is of the same form as Doolittle's [J. Appl. Phys. 22, 1471 (1951)] empirical relation between the fluidity φ of simple hydrocarbons and their free volume. It has been shown [Williams, Landel, and Ferry, J. Am. Chem. Soc. 77, 3701 (1955)] that the Doolittle equation also can be adapted to describe the abrupt decrease in molecular kinetic constants with decreasing temperature that accompanies the glass transition in certain liquids. Our result predicts that even the simplest liquids would go through this glass transition if sufficiently undercooled and crystallization did not occur. The problem of transport in actual simple and network liquids also is discussed.

It is shown that data on self‐diffusion in some simple van der Waals liquids and liquid metals are described satisfactorily by our relation with v* near the molecular volume for the van der Waals liquids and near the volume of the ion, corresponding to the highest valence state, for the metals.

1.
For general review of the glass transition see (a)
W.
Kauzman
,
Chem. Revs.
43
,
219
(
1948
);
(b) G. O. Jones, Glass (Methuen and Company, Ltd., London, 1956).
2.
D.
Turnbull
and
M. H.
Cohen
,
J. Chem. Phys.
29
,
1049
(
1958
).
3.
R. E.
Hoffman
,
J. Chem. Phys.
20
,
1567
(
1952
).
4.
N. H.
Nachtrieb
and
J.
Petit
,
J. Chem. Phys.
24
,
746
(
1956
).
5.
Glasstone, Laidler, and Eyring, Theory of Rate Processes (McGraw‐Hill Book Company, Inc., New York, 1941), pp. 477–552.
6.
A. J.
Batschinski
,
Z. Physik. Chem.
84
,
644
(
1913
).
7.
P. W. Bridgman, The Physics of High Pressure (G. Bell and Sons, London, 1949), pp. 330–357.
8.
J. D.
Mackenzie
,
J. Chem. Phys.
28
,
1037
(
1958
).
9.
J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946), pp. 93–247).
10.
H.
Eyring
,
J. Chem. Phys.
4
,
283
(
1936
);
Hirschfelder
,
Stevenson
, and
Eyring
,
J. Chem. Phys.
5
,
896
(
1937
); ,
J. Chem. Phys.
see also reference 5.
11.
T. G.
Fox
and
P. J.
Flory
,
J. Appl. Phys.
21
,
581
(
1950
);
T. G.
Fox
and
P. J.
Flory
,
J. Phys. Chem.
55
,
221
(
1951
);
T. G.
Fox
and
P. J.
Flory
,
J. Polymer Sci.
14
,
315
(
1954
).
12.
A. K.
Doolittle
,
J. Appl. Phys.
22
,
1471
(
1951
).
13.
Williams
,
Landel
, and
Ferry
,
J. Am. Chem. Soc.
77
,
3701
(
1955
).
14.
F.
Beuche
,
J. Chem. Phys.
21
,
1850
(
1953
);
F.
Beuche
,
J. Chem. Phys.
24
,
418
(
1956
); ,
J. Chem. Phys.
F.
Beuche
,
30
,
748
(
1959
).,
J. Chem. Phys.
15.
R. M.
Barrer
,
Trans. Faraday Soc.
38
,
322
(
1942
);
R. M.
Barrer
,
Trans. Faraday Soc.
39
,
48
(
1943
).,
Trans. Faraday Soc.
16.
A preliminary account of this work was presented at the Cambridge, Massachusetts meeting of the American Physical Society, March, 1959 [
M. H.
Cohen
and
D.
Turnbull
,
Bull. Am. Phys. Soc.
Ser. II,
4
,
157
(
1959
)].
17.
G. H. Vineyard, Liquid Metals and Solidification (American Society for Metals, Cleveland, Ohio, 1958), pp. 1–48.
18.
J. Bardeen and C. Herring, in Imperfections in Nearly Perfect Crystals, edited by W. Shockley et al.. (John Wiley & Sons, Inc., New York, 1952), pp. 261–289.
19.
P. Mangelsdorf (private communication).
20.
S. A.
Rice
,
Phys. Rev.
112
,
804
(
1958
).
21.
Watts
,
Alder
, and
Hildebrand
,
J. Chem. Phys.
23
,
659
(
1955
).
22.
McCall
,
Douglass
, and
Anderson
,
Phys. Fluids
2
,
87
(
1959
).
23.
D. J.
Denney
,
J. Chem. Phys.
30
,
159
(
1959
).
24.
D. J.
Denney
,
J. Chem. Phys.
27
,
259
(
1957
).
25.
G. Careri and A. Paoletti, Nuovo Cimento 2[X], 574 (1955).
26.
R. E.
Meyer
and
N. H.
Nachtrieb
,
J. Chem. Phys.
23
,
1851
(
1955
).
27.
O. J.
Kleppa
,
J. Chem. Phys.
17
,
668
(
1949
).
This content is only available via PDF.
You do not currently have access to this content.