The structure of gaseous ethylene was investigated by the sector‐microphotometer method of electron diffraction. The major internuclear distances, in terms of center of gravity parameters rg(0), were found to be C–H = 1.084±0.003 A, C=C = 1.3327±0.002 A, and C–—H = 2.120±0.006 A, and the angle H–C–H was 115.5±0.6°. Root‐mean‐square amplitudes of vibration were lC–H = 0.0768±0.003 A, lC=C = 0.0439±0.002 A, and lC–H = 0.102±0.006 A, which values agree reasonably well with values calculated from spectroscopic data. The uncertainties reported represent standard errors computed by a simplified method from least squares analyses of parameters. Discrepancies between the diffraction results and those of new infrared and Raman results are discussed in terms of the arbitrariness arising from the different operational definitions of bond distances and angles involved.

1.
L. S.
Bartell
and
R. A.
Bonham
,
J. Chem. Phys.
27
,
1414
(
1957
).
2.
H. C.
Allen
and
E. K.
Plyler
,
J. Am. Chem. Soc.
80
,
2673
(
1958
).
3.
J. M.
Dowling
and
B. P.
Stoicheff
,
Bull. Am. Phys. Soc.
Ser. II
3
,
313
(
1958
).
4.
W. S.
Gallaway
and
E. F.
Barker
,
J. Chem. Phys.
10
,
88
(
1942
).
5.
L. O.
Brockway
and
L. S.
Bartell
,
Rev. Sci. Instr.
25
,
569
(
1954
).
6.
L. S.
Bartell
and
L. O.
Brockway
,
J. Appl. Phys.
24
,
656
(
1953
).
7.
R. A. Bonham and L. S. Bartell, J. Chem. Phys. (to be published).
8.
Y.
Morino
and
K.
Kuchitsu
,
J. Chem. Phys.
28
,
175
(
1958
).
9.
Y.
Morino
and
E.
Hirota
,
J. Chem. Phys.
28
,
185
(
1958
).
10.
P. M.
Morse
,
Phys. Rev.
34
,
57
(
1929
).
11.
L. S.
Bartell
,
J. Chem. Phys.
23
,
1219
(
1955
).
12.
K. Kuchitsu (private communication).
13.
D. P.
Stevenson
and
J. A.
Ibers
,
Ann. Rev. Phys. Chem.
9
,
372
(
1958
).
14.
Bartell
,
Brockway
, and
Schwendeman
,
J. Chem. Phys.
23
,
1854
(
1955
).
15.
V. Schomaker, quoted by L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1945).
16.
P.
Debye
,
J. Chem. Phys.
9
,
55
(
1941
).
17.
It is relevant to observe that for a Morse anharmonic oscillator, rg(0) = re+3al2/2, provided l«re, for a thermal distribution between classical or quantum oscillators. For a general thermal distribution, no such simple relationship involving only l and a exists between rm(0) and re, but re⩽rm(0) ⩽re+al2.
18.
C. C.
Costain
,
J. Chem. Phys.
29
,
864
(
1958
).
This content is only available via PDF.
You do not currently have access to this content.