The calculation of absolute reaction rates is formulated in terms of quantities which are available from the potential surfaces which can be constructed at the present time. The probability of the activated state is calculated using ordinary statistical mechanics. This probability multiplied by the rate of decomposition gives the specific rate of reaction. The occurrence of quantized vibrations in the activated complex, in degrees of freedom which are unquantized in the original molecules, leads to relative reaction rates for isotopes quite different from the rates predicted using simple kinetic theory. The necessary conditions for the general statistical treatment to reduce to the usual kinetic treatment are given.

1.
Moelwyn‐Hughes, Kinetics of Reactions in Solution, Oxford Press (1933).
W. E.
Vaughan
,
J. Am. Chem. Soc.
55
,
4115
(
1933
).
2.
K. F. Herzfeld, Kinetische Theorie der Wärme (Müller‐Pouillets Lehrbuch der Physik) 1925.
3.
R. C. Tolman, Statistical Mechanics, Chemical Catalog Co., 1927.
4.
R. H. Fowler, Statistical Mechanics, Cambridge Univ. Press, 1929.
5.
H.
Pelzer
and
E.
Wigner
,
Zeits. f. Physik. Chemie
B15
,
445
(
1932
).
6.
Volmer
and
Kummerow
,
Zeits. f. Physik. Chemie
B9
,
141
(
1930
).
7.
See, for example, Whittaker, Analytic Dynamics, Cambridge Univ. Press, 1927.
J. H.
Van Vleck
and
P. C.
Cross
,
J. Chem. Phys.
1
,
357
(
1933
).
8.
M. Polanyi and E. Wigner, Zeits. f. Physik. Chemie A (Haber Band), 439 (1928).
9.
L. S.
Kassel
,
J. Phys. Chem.
34
,
1777
(
1930
).
10.
H. S. W.
Massey
and
C. B. O.
Mohr
,
Proc. Roy. Soc.
A141
,
434
(
1933
);
H. S. W.
Massey
and
C. B. O.
Mohr
,
A144
,
188
(
1934
) and subsequent papers.
11.
W. H.
Rodebush
,
J. Chem. Phys.
1
,
440
(
1933
);
V. K.
La Mer
,
J. Chem. Phys.
1
,
289
(
1933
); ,
J. Chem. Phys.
O. K.
Rice
and
H.
Gershinowitz
,
J. Chem. Phys.
2
,
853
(
1934
).,
J. Chem. Phys.
This content is only available via PDF.
You do not currently have access to this content.