It is shown that the free energy of a volume V of an isotropic system of nonuniform composition or density is given by : NVV [f0(c)+κ(▿c)2]dV, where NV is the number of molecules per unit volume, ▿c the composition or density gradient, f0 the free energy per molecule of a homogeneous system, and κ a parameter which, in general, may be dependent on c and temperature, but for a regular solution is a constant which can be evaluated. This expression is used to determine the properties of a flat interface between two coexisting phases. In particular, we find that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc, and that at a temperature T just below Tc the interfacial free energy σ is proportional to (Tc−T)32.

The predicted interfacial free energy and its temperature dependence are found to be in agreement with existing experimental data. The possibility of using optical measurements of the interface thickness to provide an additional check of our treatment is briefly discussed.

1.
(a) Miscellaneous Works of the Late Thomas Young, George Peacock, editor (J. Murray, London, 1855), Vol. 1, pp. 462–466;
(b)
R.
Becker
,
Ann. Physik
32
,
128
(
1938
).
2.
(a)
E. A.
Guggenheim
,
Trans. Faraday Soc.
41
,
150
(
1945
);
(b)
R.
Defay
and
I.
Prigogine
,
Bull. Soc. Chim. Belges
59
,
255
(
1950
).
3.
Murakima
,
Ono
,
Tamura
, and
Kurata
,
Phys. Soc. Japan
6
,
309
(
1951
).
4.
Lord
Rayleigh
,
Phil. Mag.
16
,
309
(
1883
);
Lord
Rayleigh
,
Phil. Mag.
33
,
209
(
1892
).,
Philos. Mag.
5.
S.
Ono
,
Mem. Fac. Eng. Kyushu Univ.
10
,
195
(
1947
).
6.
M. Hillert, “A theory of nucleation for solid metallic solutions,” D. Sc. thesis, Massachusetts Institute of Technology, Cambridge (1956).
7.
F.
Bloch
,
Z. Physik
74
,
295
(
1932
).
8.
T.
Mitsui
and
J.
Furuichi
,
Phys. Rev.
90
,
193
(
1953
).
9.
J.
Bardeen
,
Phys. Rev.
94
,
554
(
1954
).
10.
H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry (D. Van Nostrand Company, Inc., Princeton, 1943), p. 195.
11.
R. Fowler and E. A. Guggenheim, Statistical Mechanics (Cambridge University Press, London, 1949), pp. 316–318.
12.
A.
Münster
and
K.
Sagel
,
Z. Physik Chem.
7
,
297
(
1956
).
13.
Krichevskii
,
Khazanova
, and
Linshitz
,
Doklady Akad. Nauk. S.S.S.R.
100
,
737
(
1955
).
14.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
15.
J. D.
Cox
and
E. F. G.
Herington
,
Trans. Faraday Soc.
52
,
926
(
1956
).
16.
O. K.
Rice
,
J. Chem. Phys.
23
,
164
(
1955
).
17.
E. A. Guggenheim, Mixtures (Oxford University Press, London, 1952).
18.
J. H.
Hildebrand
and
S. E.
Wood
,
J. Chem. Phys.
1
,
817
(
1933
).
19.
J. D.
van der Waals
,
Z. Physik. Chem.
13
,
716
(
1894
).
20.
A.
Ferguson
,
Trans. Faraday Soc.
19
,
407
(
1923
).
21.
A.
Ferguson
,
Proc. Phys. Soc. (London)
52
,
759
(
1940
).
22.
W.
Ramsay
and
J.
Shields
,
Phil. Trans.
A184
,
647
(
1893
).
23.
D.
Atack
and
O. K.
Rice
,
Discussions Faraday Soc.
15
,
210
(
1953
).
24.
M. Born, Optik (Verlag Julius Springer, Berlin, 1933), p. 39, Eq. (19).
This content is only available via PDF.
You do not currently have access to this content.