A study has been made of the electronic transitions between the lowest triplet state of anthracene and its ground state. Low‐temperature spectroscopic study of the phosphorescence revealed a sharp emission band with a 0,0‐frequency (TS) at 14 927 cm—1 (EPA rigid glass solution at 77°K). A vibrational analysis in terms of known Raman frequencies indicates that the transition is of a ug allowed type. The TS absorption band was observed in anthracene with the 0,0‐frequency at 14 850 cm—1 (solution at 293°K). The study of the phosphorescence spectra of seven different chlorinated anthracenes confirmed the assignment of the anthracene lowest triplet. This study re‐establishes the earlier value obtained by Lewis and Kasha, and rejects the recent value deduced by Reid. A correlation of the above results for anthracene with calculations and observations on related polyacenes indicates that the lowest triplet of benzene is 3B1u (in D6h), and for naphthalene, anthracene, and naphthacene the lowest triplet is 3B2u (in D2h). The perturbing singlets which mix with these triplets are obtained from previously derived rules for spin‐orbital coupling in molecules.

1.
McGlynn
,
Padhye
, and
Kasha
,
J. Chem. Phys.
23
,
593
(
1955
).
2.
G. N.
Lewis
and
M.
Kasha
,
J. Am. Chem. Soc.
66
,
2100
(
1944
).
3.
G. N.
Lewis
and
M.
Kasha
,
J. Am. Chem. Soc.
67
,
994
(
1945
).
4.
C.
Reid
,
J. Chem. Phys.
20
,
1214
(
1952
).
5.
C.
Reid
,
J. Chem. Phys.
20
,
1212
(
1952
).
6.
C.
Reid
,
J. Am. Chem. Soc.
76
,
3264
(
1954
).
7.
M. J. S. Dewar, The Electronic Theory of Organic Chemistry, (Oxford University Press, New York, 1949).
8.
Muller
,
Pickett
, and
Mulliken
,
J. Am. Chem. Soc.
76
,
4770
(
1954
).
9.
V. Gold and F. L. Tye, J. Chem. Soc. (London) 1952, 2172.
10.
Eiichi
Funakubo
and
Yutaro
Matsumoto
,
J. Chem. Soc. Japan
, Pure Chem. Sect.
72
,
731
(
1951
).
11.
The preparation and purification of these chlorinated derivatives are described by
E.
Clar
and
Ch.
Marschalk
,
Mém. Presentés Soc. Chim. (France)
17
,
434
(
1950
).
12.
S. P. McGlynn and M. Kasha, Symposium on Molecular Structure and Spectra, The Ohio State University (June, 1954) (to be published).
13.
M.
Kasha
,
Discussions Faraday Soc.
No. 9,
14
(
1950
).
14.
M.
Kasha
,
J. Chem. Phys.
20
,
71
(
1952
).
15.
H.
Shull
,
J. Chem. Phys.
17
,
295
(
1949
).
16.
D. P. Craig and I. G. Ross, J. Chem. Soc. (London) 1954, 1589.
17.
G.
Porter
and
M. W.
Windsor
,
J. Chem. Phys.
21
,
2088
(
1953
). See footnote (19) in reference 1.
18.
Ch. Duffraise and J. Mathieu, Bull. Soc. Chim. (France) 1947, 307.
19.
Ivan Gillett, Bull. Soc. Chim. (France) 1950, 1135.
20.
McClure
,
Blake
, and
Hanst
,
J. Chem. Phys.
22
,
255
(
1954
).
21.
D. S.
McClure
,
J. Chem. Phys.
17
,
905
(
1949
).
22.
R. Pariser, Symposium on Molecular Structure and Spectra, The Ohio State University (June, 1954).
23.
W.
Moffitt
,
J. Chem. Phys.
22
,
320
(
1954
).
24.
J. R.
Platt
,
J. Chem. Phys.
17
,
470
(
1949
).
25.
J. Sidman and D. S. McClure (private communication; see footnote c, Table II) have determined experimentally that the transition to the first excited singlet state of anthracene is short axis polarized, in concordance with the above references.
26.
D. S.
McClure
,
J. Chem. Phys.
17
,
665
(
1949
).
27.
D. P.
Craig
,
J. Chem. Phys.
18
,
236
(
1950
).
28.
M.
Mizushima
and
S.
Koide
,
J. Chem. Phys.
20
,
765
(
1952
).
29.
D. P.
Craig
,
Proc. Intern. Congr. Pure Appl. Chem.
11
,
411
(
1947
).
30.
J.
Jacobs
,
Proc. Phys. Soc. (London)
62
,
710
(
1949
).
31.
L. Goodman, see footnote (d), Table I.
32.
Obtained by means of the principles enunciated by
S. I.
Weissman
,
J. Chem. Phys.
18
,
232
(
1950
), and others (see reference 28).
33.
We are indebted to Dr. D. S. McClure for a discussion of these points.
This content is only available via PDF.
You do not currently have access to this content.