The isotopic composition of oxygen liberated in the catalytic decomposition of hydrogen peroxide using MnO2, Fe2O3, colloidal gold, metallic platinum, and soluble catalase as catalysts has been measured. All the catalysts except catalase produced a measurable fractionation of the oxygen isotopes in the case of complete decomposition. A few rate experiments were also carried out, and the kinetics studied from the standpoint of isotope separation as a function of fraction of hydrogen peroxide decomposed. It is demonstrated that none of the liberated oxygen comes from the substrate water or from the potassium permanganate when hydrogen peroxide is oxidized. Observed fractionation factors are somewhat smaller than the maximum values calculated on the basis of Bigeleisen's equations. A minimum in the O18 percentage of the evolved oxygen in the case of the catalase experiments suggests that two mechanisms are operative for this type of catalysis.

The initial enhancement of the O18 percentage of the evolved oxygen over that in the peroxide remains unexplained.

1.
See, for example, the calculations of H. C. Urey, J. Chem. Soc. 562 (1947),
and of
J. M.
McCrea
,
J. Chem. Phys.
18
,
849
(
1950
).
2.
E. R. S.
Winter
and
H. V. A.
Briscoe
,
J. Am. Chem. Soc.
73
,
496
(
1951
).
3.
I. M.
Kolthoff
and
I. K.
Miller
,
J. Am. Chem. Soc.
73
,
3055
(
1951
).
4.
A. E. Cahill and H. Taube described some experiments in progress along these lines at the Diamond Jubilee Meeting of the Am. Chem. Soc., New York, Sept. 7, 1951. We are indebted to Professor Taube for discussing his results with us.
5.
A. O.
Nier
,
Phys. Rev.
77
,
789
(
1950
).
6.
N. F.
Hall
and
O. R.
Alexander
,
J. Am. Chem. Soc.
62
,
3455
(
1940
).
7.
G. A.
Mills
,
J. Am. Chem. Soc.
62
,
2833
(
1940
).
8.
M.
Dole
,
J. Chem. Phys.
4
,
268
(
1936
);
M.
Dole
,
J. Am. Chem. Soc.
61
,
2025
(
1939
);
M.
Dole
,
Science
109
,
77
(
1949
).
9.
B.
Chance
,
Nature
,
161
,
914
(
1948
);
B.
Chance
,
J. Biol. Chem.
179
,
1299
(
1949
);
B.
Chance
,
180
,
947
(
1949
).,
J. Biol. Chem.
10.
D. B.
Broughton
and
R. L.
Wentworth
,
J. Am. Chem. Soc.
69
,
741
(
1947
).
11.
Broughton
,
Wentworth
, and
Laing
,
J. Am. Chem. Soc.
69
,
744
(
1947
).
12.
J.
Mooi
and
P. W.
Selwood
,
J. Am. Chem. Soc.
74
,
1750
(
1952
).
We are indebted to Professor Selwood for the opportunity of reading this paper in advance of publication. A preliminary note appeared in
J.
Mooi
and
P. W.
Selwood
,
J. Am. Chem. Soc.
72
,
4333
(
1950
).
13.
F.
Haber
and
J.
Weiss
,
Proc. Roy. Soc. (London)
147A
,
332
(
1934
).
14.
Baxendale
,
Evans
, and
Park
,
Trans. Faraday Soc.
42
,
155
(
1946
).
15.
V. Sten
Andersen
,
Acta Chem. Scand.
2
,
1
(
1948
);
also discussed by J. A. Christiansen, XII International Congress of Pure and Applied Chemistry, New York, Sept. 10, 1951.
16.
Barb
,
Baxendale
,
George
, and
Hargrave
,
Trans. Faraday Soc.
47
,
462
,
591
(
1951
).
17.
J.
Bigeleisen
,
J. Chem. Phys.
17
,
344
,
675
(
1949
);
J.
Bigeleisen
and
M. G.
Mayer
,
J. Chem. Phys.
15
,
261
(
1947
).
18.
P. A.
Giguère
,
J. Chem. Phys.
18
,
88
(
1950
);
See also
R. C.
Taylor
,
J. Chem. Phys.
18
,
898
(
1950
).
19.
C. R.
Bailey
and
R. R.
Gordon
,
Trans. Faraday Soc.
34
,
1133
(
1938
).
20.
Y.
Morino
and
S.
Mizushima
,
Sci. Papers Inst. Phys. Chem. Research, (Tokyo)
32
,
220
(
1937
); quoted by Bailey and Gordon.
21.
We are indebted to Dr. Gordon M. Barrow for aid in these calculations.
22.
P. A.
Giguère
,
J. Chem. Phys.
18
,
88
(
1950
);
see also
R. C.
Taylor
,
J. Chem. Phys.
18
,
898
(
1950
);
L. R.
Zumwalt
and
P. A.
Giguère
,
J. Chem. Phys.
9
,
458
(
1941
).
23.
H. C. Urey, J. Chem. Soc. 562 (1947).
24.
P.
George
,
Nature
160
,
41
(
1947
);
P.
George
,
Biochem. J.
44
,
197
(
1949
).
This content is only available via PDF.
You do not currently have access to this content.