In our previous work [Mondal et al., J. Chem. Phys. 162, 014114 (2025)], we developed several efficient computational approaches to simulate exciton–polariton dynamics described by the Holstein–Tavis–Cummings (HTC) Hamiltonian under the collective coupling regime. Here, we incorporated these strategies into the previously developed Lindblad-partially linearized density matrix (L-PLDM) approach for simulating 2D electronic spectroscopy (2DES) of exciton–polariton under the collective coupling regime. In particular, we apply the efficient quantum dynamics propagation scheme developed in Paper I to both the forward and the backward propagations in the PLDM and develop an efficient importance sampling scheme and graphics processing unit vectorization scheme that allow us to reduce the computational costs from O(K2)O(T3) to O(K)O(T0) for the 2DES simulation, where K is the number of states and T is the number of time steps of propagation. We further simulated the 2DES for an HTC Hamiltonian under the collective coupling regime and analyzed the signal from both rephasing and non-rephasing contributions of the ground state bleaching, excited state emission, and stimulated emission pathways.

1.
S.
Takahashi
and
K.
Watanabe
, “
Decoupling from a thermal bath via molecular polariton formation
,”
J. Phys. Chem. Lett.
11
,
1349
1356
(
2020
).
2.
T. M.
Autry
,
G.
Nardin
,
C. L.
Smallwood
,
K.
Silverman
,
D.
Bajoni
,
A.
Lemaître
,
S.
Bouchoule
,
J.
Bloch
, and
S.
Cundiff
, “
Excitation ladder of cavity polaritons
,”
Phys. Rev. Lett.
125
,
067403
(
2020
).
3.
M.
Son
,
Z. T.
Armstrong
,
R. T.
Allen
,
A.
Dhavamani
,
M. S.
Arnold
, and
M. T.
Zanni
, “
Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy
,”
Nat. Commun.
13
,
7305
(
2022
).
4.
N.
Peruffo
,
F.
Mancin
, and
E.
Collini
, “
Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature
,”
Adv. Opt. Mater.
11
,
2203010
(
2023
).
5.
L.
Mewes
,
M.
Wang
,
R. A.
Ingle
,
K.
Börjesson
, and
M.
Chergui
, “
Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy
,”
Commun. Phys.
3
,
157
(
2020
).
6.
T.
Quenzel
,
D.
Timmer
,
M.
Gittinger
,
J.
Zablocki
,
F.
Zheng
,
M.
Schiek
,
A.
Lützen
,
T.
Frauenheim
,
S.
Tretiak
,
M.
Silies
et al, “
Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates
,”
ACS Nano
16
,
4693
4704
(
2022
).
7.
D.
Timmer
,
M.
Gittinger
,
T.
Quenzel
,
S.
Stephan
,
Y.
Zhang
,
M. F.
Schumacher
,
A.
Lützen
,
M.
Silies
,
S.
Tretiak
,
J.-H.
Zhong
et al, “
Plasmon mediated coherent population oscillations in molecular aggregates
,”
Nat. Commun.
14
,
8035
(
2023
).
8.
M. E.
Mondal
,
E. R.
Koessler
,
J.
Provazza
,
A. N.
Vamivakas
,
S. T.
Cundiff
,
T. D.
Krauss
, and
P.
Huo
, “
Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons
,”
J. Chem. Phys.
159
,
094102
(
2023
).
9.
C. A.
DelPo
,
B.
Kudisch
,
K. H.
Park
,
S.-U.-Z.
Khan
,
F.
Fassioli
,
D.
Fausti
,
B. P.
Rand
, and
G. D.
Scholes
, “
Polariton transitions in femtosecond transient absorption studies of ultrastrong light–molecule coupling
,”
J. Phys. Chem. Lett.
11
,
2667
2674
(
2020
).
10.
T.
Virgili
,
D.
Coles
,
A.
Adawi
,
C.
Clark
,
P.
Michetti
,
S.
Rajendran
,
D.
Brida
,
D.
Polli
,
G.
Cerullo
, and
D.
Lidzey
, “
Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity
,”
Phys. Rev. B
83
,
245309
(
2011
).
11.
S.
Renken
,
R.
Pandya
,
K.
Georgiou
,
R.
Jayaprakash
,
L.
Gai
,
Z.
Shen
,
D. G.
Lidzey
,
A.
Rao
, and
A. J.
Musser
, “
Untargeted effects in organic exciton–polariton transient spectroscopy: A cautionary tale
,”
J. Chem. Phys.
155
,
154701
(
2021
).
12.
B.
Liu
,
V. M.
Menon
, and
M. Y.
Sfeir
, “
Ultrafast thermal modification of strong coupling in an organic microcavity
,”
APL Photonics
6
,
016103
(
2021
).
13.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
14.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
, “
Two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
297
,
307
313
(
1998
).
15.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
6622
(
2001
).
16.
S. M.
Gallagher Faeder
and
D. M.
Jonas
, “
Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations
,”
J. Phys. Chem. A
103
,
10489
10505
(
1999
).
17.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
, “
Exciton analysis in 2D electronic spectroscopy
,”
J. Phys. Chem. B
109
,
10542
(
2005
).
18.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Two-dimensional spectroscopy of electronic couplings in photosynthesis
,”
Nature
434
,
625
628
(
2005
).
19.
S.
Biswas
,
J.
Kim
,
X.
Zhang
, and
G. D.
Scholes
, “
Coherent two-dimensional and broadband electronic spectroscopies
,”
Chem. Rev.
122
,
4257
4321
(
2022
).
20.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
Van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
et al, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
656
(
2017
).
21.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
22.
E.
Fresch
,
F. V.
Camargo
,
Q.
Shen
,
C. C.
Bellora
,
T.
Pullerits
,
G. S.
Engel
,
G.
Cerullo
, and
E.
Collini
, “
Two-dimensional electronic spectroscopy
,”
Nat. Rev. Methods Primers
3
,
84
(
2023
).
23.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press on Demand
,
1999
), Vol.
6
.
24.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mancal
,
Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy
(
John Wiley & Sons
,
2013
).
25.
A. M.
Brańczyk
,
D. B.
Turner
, and
G. D.
Scholes
, “
Crossing disciplines—A view on two-dimensional optical spectroscopy
,”
Ann. Phys.
526
,
31
49
(
2014
).
26.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
, “
Two-dimensional spectroscopy for non-specialists
,”
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
285
(
2019
).
27.
E.
Collini
, “
2D electronic spectroscopic techniques for quantum technology applications
,”
J. Phys. Chem. C
125
,
13096
13108
(
2021
).
28.
E. O.
Odewale
,
S. T.
Wanasinghe
, and
A. S.
Rury
, “
Assessing the determinants of cavity polariton relaxation using angle-resolved photoluminescence excitation spectroscopy
,”
J. Phys. Chem. Lett.
15
,
5705
5713
(
2024
).
29.
E. O.
Odewale
,
A. G.
Avramenko
, and
A. S.
Rury
, “
Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples
,”
Nanophotonics
13
,
2695
2706
(
2024
).
30.
W.
Ying
,
M. E.
Mondal
, and
P.
Huo
, “
Theory and quantum dynamics simulations of exciton-polariton motional narrowing
,”
J. Chem. Phys.
161
,
064105
(
2024
).
31.
B. X.
Chng
,
W.
Ying
,
Y.
Lai
,
A. N.
Vamivakas
,
S. T.
Cundiff
,
T. D.
Krauss
, and
P.
Huo
, “
Mechanism of molecular polariton decoherence in the collective light–matter couplings regime
,”
J. Phys. Chem. Lett.
15
,
11773
11783
(
2024
).
32.
M.
Du
,
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
Z.
Hu
,
V. M.
Menon
, and
J.
Yuen-Zhou
, “
Theory for polariton-assisted remote energy transfer
,”
Chem. Sci.
9
,
6659
6669
(
2018
).
33.
G.
Sandik
,
J.
Feist
,
F. J.
García-Vidal
, and
T.
Schwartz
, “
Cavity-enhanced energy transport in molecular systems
,”
Nat. Mater.
(published online
2024
).
34.
Z.
Zhang
,
X.
Nie
,
D.
Lei
, and
S.
Mukamel
, “
Multidimensional coherent spectroscopy of molecular polaritons: Langevin approach
,”
Phys. Rev. Lett.
130
,
103001
(
2023
).
35.
D.
Gallego-Valencia
,
L.
Mewes
,
J.
Feist
, and
J. L.
Sanz-Vicario
, “
Coherent multidimensional spectroscopy in polariton systems
,”
Phys. Rev. A
109
,
063704
(
2024
).
36.
R. F.
Ribeiro
,
A. D.
Dunkelberger
,
B.
Xiang
,
W.
Xiong
,
B. S.
Simpkins
,
J. C.
Owrutsky
, and
J.
Yuen-Zhou
, “
Theory for nonlinear spectroscopy of vibrational polaritons
,”
J. Phys. Chem. Lett.
9
,
3766
3771
(
2018
).
37.
M. E.
Mondal
,
A. N.
Vamivakas
,
S. T.
Cundiff
,
T. D.
Krauss
, and
P.
Huo
, “
Polariton spectra under the collective coupling regime. I. Efficient simulation of linear spectra and quantum dynamics
,”
J. Chem. Phys.
162
,
014114
(
2025
).
38.
A.
Mandal
,
M. A.
Taylor
,
B. M.
Weight
,
E. R.
Koessler
,
X.
Li
, and
P.
Huo
, “
Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics
,”
Chem. Rev.
123
,
9786
9879
(
2023
).
39.
P.
Huo
and
D. F.
Coker
, “
Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution
,”
J. Chem. Phys.
135
,
201101
(
2011
).
40.
P.
Huo
and
D. F.
Coker
, “
Semi-classical path integral non-adiabatic dynamics: A partial linearized classical mapping Hamiltonian approach
,”
Mol. Phys.
110
,
1035
1052
(
2012
).
41.
P.
Huo
and
D. F.
Coker
, “
Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation
,”
J. Chem. Phys.
137
,
22A535
(
2012
).
42.
P.
Huo
,
T. F.
Miller
, and
D. F.
Coker
, “
Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
,”
J. Chem. Phys.
139
,
151103
(
2013
).
43.
M.
Lee
,
P.
Huo
, and
D.
Coker
, “
Semiclassical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions
,”
Annu. Rev. Phys. Chem.
67
,
639
(
2016
).
44.
J.
Provazza
,
F.
Segatta
,
M.
Garavelli
, and
D. F.
Coker
, “
Semiclassical path integral calculation of nonlinear optical spectroscopy
,”
J. Chem. Theory Comput.
14
,
856
866
(
2018
).
45.
E.
Dunkel
,
S.
Bonella
, and
D.
Coker
, “
Iterative linearized approach to nonadiabatic dynamics
,”
J. Chem. Phys.
129
,
114106
(
2008
).
46.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory
,”
J. Chem. Phys.
153
,
194109
(
2020
).
47.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches
,”
J. Chem. Phys.
153
,
194110
(
2020
).
48.
J.
Nickolls
,
I.
Buck
,
M.
Garland
, and
K.
Skadron
, “
Scalable parallel programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for?
,”
Queue
6
,
40
53
(
2008
).
49.
R.
Okuta
,
Y.
Unno
,
D.
Nishino
,
S.
Hido
, and
C.
Loomis
, “
CuPy: A NumPy-compatible library for NVIDIA GPU calculations
,” in
Proceedings of the Workshop on Machine Learning Systems (LearningSys) in The Thirty-First Annual Conference on Neural Information Processing Systems (NIPS)
,
2017
.
50.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Proceedings of the 33rd International Conference on Neural Information Processing Systems
(
Curran Associates, Inc.
,
Red Hook, NY
,
2019
).
51.
L.
Dalcín
,
R.
Paz
, and
M.
Storti
, “
MPI for Python
,”
J. Parallel Distrib. Comput.
65
,
1108
1115
(
2005
).
52.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
53.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba: A LLVM-based python JIT compiler
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15
(
Association for Computing Machinery
,
New York
,
2015
).
54.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
, “
Direct determination of discrete harmonic bath parameters from molecular dynamics simulations
,”
J. Comput. Chem.
38
,
110
115
(
2017
).
55.
E. R.
Koessler
,
A.
Mandal
, and
P.
Huo
, “
Incorporating Lindblad decay dynamics into mixed quantum-classical simulations
,”
J. Chem. Phys.
157
,
064101
(
2022
).
56.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
57.
F.
Herrera
and
F. C.
Spano
, “
Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states
,”
ACS Photonics
5
,
65
79
(
2018
).
58.
Y.
Lai
,
W.
Ying
, and
P.
Huo
, “
Non-equilibrium rate theory for polariton relaxation dynamics
,”
J. Chem. Phys.
161
,
104109
(
2024
).
59.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Generalization of the Tavis–Cummings model for multi-level anharmonic systems
,”
New J. Phys.
23
,
063081
(
2021
).
60.
J. A.
Campos-Gonzalez-Angulo
and
J.
Yuen-Zhou
, “
Generalization of the Tavis–Cummings model for multi-level anharmonic systems: Insights on the second excitation manifold
,”
J. Chem. Phys.
156
,
194308
(
2022
).
61.
B. X. K.
Chng
,
M. E.
Mondal
,
W.
Ying
, and
P.
Huo
, “
Quantum dynamics simulations of exciton polariton transport
,”
Nano Lett.
25
,
1617
1622
(
2025
).
62.
D.
Hu
,
B.
Chng
,
W.
Ying
, and
P.
Huo
, “
Trajectory-based non-adiabatic simulations of the polariton relaxation dynamics
,” chemRxiv:10.26434/chemrxiv–2024–t818f (
2024
).
You do not currently have access to this content.