The conformational dynamics of the DNA in the nucleosome may play a role in governing gene regulation and accessibility and impact higher-order chromatin structure. This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences—alpha satellite palindromic and Widom-601—over 6 μs at physiological salt concentrations. A comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, although CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends. Principal component analysis is applied to DNA structural parameters, revealing multiple free energy minima, especially in CG simulations. These findings highlight the potential of the SIRAH CG force field for studying large-scale nucleosome dynamics, offering insights into DNA repositioning and sequence-dependent behavior.

1.
K.
Luger
,
M. L.
Dechassa
, and
D. J.
Tremethick
, “
New insights into nucleosome and chromatin structure: An ordered state or a disordered affair?
,”
Nat. Rev. Mol. Cell Biol.
13
(
7
),
436
447
(
2012
).
2.
R. K.
McGinty
and
S.
Tan
, “
Nucleosome structure and function
,”
Chem. Rev.
115
(
6
),
2255
2273
(
2015
).
3.
K.-D.
Kim
, “
Potential roles of condensin in genome organization and beyond in fission yeast
,”
J. Microbiol.
59
(
5
),
449
459
(
2021
).
4.
R. D.
Kornberg
and
Y.
Lorch
, “
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
,”
Cell
98
(
3
),
285
294
(
1999
).
5.
E.
Segal
,
Y.
Fondufe-Mittendorf
,
L.
Chen
,
A.
Thåström
,
Y.
Field
,
I. K.
Moore
,
J.-P. Z.
Wang
, and
J.
Widom
, “
A genomic code for nucleosome positioning
,”
Nature
442
(
7104
),
772
778
(
2006
).
6.
M. M.
Müller
and
T. W.
Muir
, “
Histones: At the crossroads of peptide and protein chemistry
,”
Chem. Rev.
115
(
6
),
2296
2349
(
2015
).
7.
J. J.
Parmar
and
R.
Padinhateeri
, “
Nucleosome positioning and chromatin organization
,”
Curr. Opin. Struct. Biol.
64
,
111
118
(
2020
).
8.
A. K.
Shaytan
,
G. A.
Armeev
,
A.
Goncearenco
,
V. B.
Zhurkin
,
D.
Landsman
, and
A. R.
Panchenko
, “
Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: Atomistic insights into nucleosome functions
,”
J. Mol. Biol.
428
(
1
),
221
237
(
2016
).
9.
Z.
Li
and
H.
Kono
, “
Distinct roles of histone H3 and H2A tails in nucleosome stability
,”
Sci. Rep.
6
(
1
),
31437
(
2016
).
10.
A.
Gansen
,
F.
Hauger
,
K.
Toth
, and
J.
Langowski
, “
Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: Optimizing stability and resolution of subpopulations
,”
Anal. Biochem.
368
(
2
),
193
204
(
2007
).
11.
Y.
Chen
,
J. M.
Tokuda
,
T.
Topping
,
S. P.
Meisburger
,
S. A.
Pabit
,
L. M.
Gloss
, and
L.
Pollack
, “
Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
2
),
334
339
(
2017
).
12.
T. T.
Ngo
,
Q.
Zhang
,
R.
Zhou
,
J. G.
Yodh
, and
T.
Ha
, “
Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility
,”
Cell
160
(
6
),
1135
1144
(
2015
).
13.
G.
Meersseman
,
S.
Pennings
, and
E. M.
Bradbury
, “
Mobile nucleosomes–A general behavior
,”
EMBO J.
11
(
8
),
2951
2959
(
1992
).
14.
S.
Pennings
,
G.
Meersseman
, and
E. M.
Bradbury
, “
Mobility of positioned nucleosomes on 5 S rDNA
,”
J. Mol. Biol.
220
(
1
),
101
110
(
1991
).
15.
A.
Flaus
and
T. J.
Richmond
, “
Positioning and stability of nucleosomes on MMTV 3′LTR sequences
,”
J. Mol. Biol.
275
(
3
),
427
441
(
1998
).
16.
C. K.
Materese
,
A.
Savelyev
, and
G. A.
Papoian
, “
Counterion atmosphere and hydration patterns near a nucleosome core particle
,”
J. Am. Chem. Soc.
131
(
41
),
15005
15013
(
2009
).
17.
J.
Erler
,
R.
Zhang
,
L.
Petridis
,
X.
Cheng
,
J. C.
Smith
, and
J.
Langowski
, “
The role of histone tails in the nucleosome: A computational study
,”
Biophys. J.
107
(
12
),
2911
2922
(
2014
).
18.
E. A.
Morrison
,
S.
Bowerman
,
K. L.
Sylvers
,
J.
Wereszczynski
, and
C. A.
Musselman
, “
The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome
,”
Elife
7
,
e31481
(
2018
).
19.
J.
Huertas
and
V.
Cojocaru
, “
Breaths, twists, and turns of atomistic nucleosomes
,”
J. Mol. Biol.
433
(
6
),
166744
(
2021
).
20.
R.
Ettig
,
N.
Kepper
,
R.
Stehr
,
G.
Wedemann
, and
K.
Rippe
, “
Dissecting DNA-histone interactions in the nucleosome by molecular dynamics simulations of DNA unwrapping
,”
Biophys. J.
101
(
8
),
1999
2008
(
2011
).
21.
G. N.
Rychkov
,
A. V.
Ilatovskiy
,
I. B.
Nazarov
,
A. V.
Shvetsov
,
D. V.
Lebedev
,
A. Y.
Konev
,
V. V.
Isaev-Ivanov
, and
A. V.
Onufriev
, “
Partially assembled nucleosome structures at atomic detail
,”
Biophys. J.
112
(
3
),
460
472
(
2017
).
22.
B.
Zhang
,
W.
Zheng
,
G. A.
Papoian
, and
P. G.
Wolynes
, “
Exploring the free energy landscape of nucleosomes
,”
J. Am. Chem. Soc.
138
(
26
),
8126
8133
(
2016
).
23.
K.
Chakraborty
and
S. M.
Loverde
, “
Asymmetric breathing motions of nucleosomal DNA and the role of histone tails
,”
J. Chem. Phys.
147
(
6
),
065101
(
2017
).
24.
P.
Khatua
,
P. K.
Tang
,
A.
Ghosh Moulick
,
R.
Patel
,
A.
Manandhar
, and
S. M.
Loverde
, “
Sequence dependence in nucleosome dynamics
,”
J. Phys. Chem. B
128
(
13
),
3090
3101
(
2024
).
25.
K.
Chakraborty
,
M.
Kang
, and
S. M.
Loverde
, “
Molecular mechanism for the role of the H2A and H2B histone tails in nucleosome repositioning
,”
J. Phys. Chem. B
122
(
50
),
11827
11840
(
2018
).
26.
G. A.
Armeev
,
A. S.
Kniazeva
,
G. A.
Komarova
,
M. P.
Kirpichnikov
, and
A. K.
Shaytan
, “
Histone dynamics mediate DNA unwrapping and sliding in nucleosomes
,”
Nat. Commun.
12
(
1
),
2387
(
2021
).
27.
D.
Winogradoff
and
A.
Aksimentiev
, “
Molecular mechanism of spontaneous nucleosome unraveling
,”
J. Mol. Biol.
431
(
2
),
323
335
(
2019
).
28.
X.
Ding
,
X.
Lin
, and
B.
Zhang
, “
Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface
,”
Nat. Commun.
12
(
1
),
1091
(
2021
).
29.
S. E.
Farr
,
E. J.
Woods
,
J. A.
Joseph
,
A.
Garaizar
, and
R.
Collepardo-Guevara
, “
Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions
,”
Nat. Commun.
12
(
1
),
2883
(
2021
).
30.
J.
Yoo
,
D.
Winogradoff
, and
A.
Aksimentiev
, “
Molecular dynamics simulations of DNA–DNA and DNA–protein interactions
,”
Curr. Opin. Struct. Biol.
64
,
88
96
(
2020
).
31.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
, “
Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers
,”
Biophys. J.
92
(
11
),
3817
3829
(
2007
).
32.
I.
Ivani
,
P. D.
Dans
,
A.
Noy
,
A.
Pérez
,
I.
Faustino
,
A.
Hospital
,
J.
Walther
,
P.
Andrio
,
R.
Goñi
,
A.
Balaceanu
et al, “
Parmbsc1: A refined force field for DNA simulations
,”
Nat. Methods
13
(
1
),
55
58
(
2016
).
33.
M.
Zgarbová
,
J.
Sponer
,
M.
Otyepka
,
T. E.
Cheatham
III
,
R.
Galindo-Murillo
, and
P.
Jurecka
, “
Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA
,”
J. Chem. Theory Comput.
11
(
12
),
5723
5736
(
2015
).
34.
E. J.
Denning
,
U. D.
Priyakumar
,
L.
Nilsson
, and
A. D.
Mackerell
, Jr.
, “
Impact of 2′-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA
,”
J. Comput. Chem.
32
(
9
),
1929
1943
(
2011
).
35.
K.
Hart
,
N.
Foloppe
,
C. M.
Baker
,
E. J.
Denning
,
L.
Nilsson
, and
A. D.
MacKerell
, Jr.
, “
Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium
,”
J. Chem. Theory Comput.
8
(
1
),
348
362
(
2012
).
36.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
(
19
),
5179
5197
(
1995
).
37.
M.
Zgarbová
,
M.
Otyepka
,
J.
Sponer
,
A.
Mladek
,
P.
Banas
,
T. E.
Cheatham
III
, and
P.
Jurecka
, “
Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles
,”
J. Chem. Theory Comput.
7
(
9
),
2886
2902
(
2011
).
38.
R.
Galindo-Murillo
,
J. C.
Robertson
,
M.
Zgarbova
,
J.
Sponer
,
M.
Otyepka
,
P.
Jurecka
, and
T. E.
Cheatham
III
, “
Assessing the current state of Amber force field modifications for DNA
,”
J. Chem. Theory Comput.
12
(
8
),
4114
4127
(
2016
).
39.
O.
Love
,
R.
Galindo-Murillo
,
M.
Zgarbová
,
J.
Šponer
,
P.
Jurečka
, and
T. E.
Cheatham
III
, “
Assessing the current state of Amber force field modifications for DNA—2023 edition
,”
J. Chem. Theory Comput.
19
(
13
),
4299
4307
(
2023
).
40.
V.
Minhas
,
T.
Sun
,
A.
Mirzoev
,
N.
Korolev
,
A. P.
Lyubartsev
, and
L.
Nordenskiöld
, “
Modeling DNA flexibility: Comparison of force fields from atomistic to multiscale levels
,”
J. Phys. Chem. B
124
(
1
),
38
49
(
2019
).
41.
M. R.
Tucker
,
S.
Piana
,
D.
Tan
,
M. V.
LeVine
, and
D. E.
Shaw
, “
Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes
,”
J. Phys. Chem. B
126
(
24
),
4442
4457
(
2022
).
42.
S.
Wei
,
S. J.
Falk
,
B. E.
Black
, and
T. H.
Lee
, “
A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome
,”
Nucleic Acids Res.
43
(
17
),
E111
U148
(
2015
).
43.
S.
Bilokapic
,
M.
Strauss
, and
M.
Halic
, “
Structural rearrangements of the histone octamer translocate DNA
,”
Nat. Commun.
9
(
1
),
1330
(
2018
).
44.
G. D.
Bowman
and
M. G.
Poirier
, “
Post-translational modifications of histones that influence nucleosome dynamics
,”
Chem. Rev.
115
(
6
),
2274
2295
(
2015
).
45.
R.
Patel
,
A.
Onyema
,
P. K.
Tang
, and
S. M.
Loverde
, “
Conformational dynamics of the nucleosomal histone H2B tails revealed by molecular dynamics simulations
,”
J. Chem. Inf. Model.
64
,
4709
(
2024
).
46.
G.
Ozer
,
A.
Luque
, and
T.
Schlick
, “
The chromatin fiber: Multiscale problems and approaches
,”
Curr. Opin. Struct. Biol.
31
,
124
139
(
2015
).
47.
C.
Hyeon
and
D.
Thirumalai
, “
Capturing the essence of folding and functions of biomolecules using coarse-grained models
,”
Nat. Commun.
2
(
1
),
487
(
2011
).
48.
G.
Reddy
and
D.
Thirumalai
, “
Asymmetry in histone rotation in forced unwrapping and force quench rewrapping in a nucleosome
,”
Nucleic Acids Res.
49
(
9
),
4907
4918
(
2021
).
49.
J.
Lequieu
,
A.
Córdoba
,
D. C.
Schwartz
, and
J. J.
de Pablo
, “
Tension-dependent free energies of nucleosome unwrapping
,”
ACS Cent. Sci.
2
(
9
),
660
666
(
2016
).
50.
T.
Sun
,
V.
Minhas
,
A.
Mirzoev
,
N.
Korolev
,
A. P.
Lyubartsev
, and
L.
Nordenskiöld
, “
A bottom-up coarse-grained model for nucleosome–nucleosome interactions with explicit ions
,”
J. Chem. Theory Comput.
18
(
6
),
3948
3960
(
2022
).
51.
D.
Chakraborty
,
B.
Mondal
, and
D.
Thirumalai
, “
Brewing COFFEE: A sequence-specific coarse-grained energy function for simulations of DNA–protein complexes
,”
J. Chem. Theory Comput.
20
(
3
),
1398
1413
(
2024
).
52.
Z.
Li
,
S.
Portillo-Ledesma
, and
T.
Schlick
, “
Brownian dynamics simulations of mesoscale chromatin fibers
,”
Biophys. J.
122
(
14
),
2884
2897
(
2023
).
53.
D. A.
Beard
and
T.
Schlick
, “
Computational modeling predicts the structure and dynamics of chromatin fiber
,”
Structure
9
(
2
),
105
114
(
2001
).
54.
Q.
Zhang
,
D. A.
Beard
, and
T.
Schlick
, “
Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm
,”
J. Comput. Chem.
24
(
16
),
2063
2074
(
2003
).
55.
R.
Collepardo-Guevara
and
T.
Schlick
, “
Chromatin fiber polymorphism triggered by variations of DNA linker lengths
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
22
),
8061
8066
(
2014
).
56.
G.
Arya
and
T.
Schlick
, “
Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
44
),
16236
16241
(
2006
).
57.
O.
Perišić
,
S.
Portillo-Ledesma
, and
T.
Schlick
, “
Sensitive effect of linker histone binding mode and subtype on chromatin condensation
,”
Nucleic Acids Res.
47
(
10
),
4948
4957
(
2019
).
58.
A.
Davtyan
,
N. P.
Schafer
,
W.
Zheng
,
C.
Clementi
,
P. G.
Wolynes
, and
G. A.
Papoian
, “
AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing
,”
J. Phys. Chem. B
116
(
29
),
8494
8503
(
2012
).
59.
D. M.
Hinckley
,
G. S.
Freeman
,
J. K.
Whitmer
, and
J. J.
De Pablo
, “
An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization
,”
J. Chem. Phys.
139
(
14
),
144903
(
2013
).
60.
J.
Lequieu
,
D. C.
Schwartz
, and
J. J.
de Pablo
, “
In silico evidence for sequence-dependent nucleosome sliding
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
44
),
E9197
E9205
(
2017
).
61.
T.
Niina
,
G. B.
Brandani
,
C.
Tan
, and
S.
Takada
, “
Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations
,”
PLoS Comput. Biol.
13
(
12
),
e1005880
(
2017
).
62.
G. B.
Brandani
,
T.
Niina
,
C.
Tan
, and
S.
Takada
, “
DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations
,”
Nucleic Acids Res.
46
(
6
),
2788
2801
(
2018
).
63.
F.
Nagae
,
G. B.
Brandani
,
S.
Takada
, and
T.
Terakawa
, “
The lane-switch mechanism for nucleosome repositioning by DNA translocase
,”
Nucleic Acids Res.
49
(
16
),
9066
9076
(
2021
).
64.
A.
Brandner
,
A.
Schüller
,
F.
Melo
, and
S.
Pantano
, “
Exploring DNA dynamics within oligonucleosomes with coarse-grained simulations: SIRAH force field extension for protein-DNA complexes
,”
Biochem. Biophys. Res. Commun.
498
(
2
),
319
326
(
2018
).
65.
R. V.
Honorato
,
J.
Roel-Touris
, and
A. M.
Bonvin
, “
Martini-based protein-DNA coarse-grained haddocking
,”
Front. Mol. Biosci.
6
,
102
(
2019
).
66.
L.
Borges-Araújo
,
I.
Patmanidis
,
A. P.
Singh
,
L. H.
Santos
,
A. K.
Sieradzan
,
S.
Vanni
,
C.
Czaplewski
,
S.
Pantano
,
W.
Shinoda
,
L.
Monticelli
et al, “
Pragmatic coarse-graining of proteins: Models and applications
,”
J. Chem. Theory Comput.
19
(
20
),
7112
7135
(
2023
).
67.
J. J.
Uusitalo
,
H. I.
Ingólfsson
,
P.
Akhshi
,
D. P.
Tieleman
, and
S. J.
Marrink
, “
Martini coarse-grained force field: Extension to DNA
,”
J. Chem. Theory Comput.
11
(
8
),
3932
3945
(
2015
).
68.
F.
Klein
,
M.
Soñora
,
L.
Helene Santos
,
E.
Nazareno Frigini
,
A.
Ballesteros-Casallas
,
M.
Rodrigo Machado
, and
S.
Pantano
, “
The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels
,”
J. Struct. Biol.
215
(
3
),
107985
(
2023
).
69.
L.
Darré
,
M. R.
Machado
,
A. F.
Brandner
,
H. C.
González
,
S.
Ferreira
, and
S.
Pantano
, “
SIRAH: A structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics
,”
J. Chem. Theory Comput.
11
(
2
),
723
739
(
2015
).
70.
M. R.
Machado
,
E. E.
Barrera
,
F.
Klein
,
M.
Sóñora
,
S.
Silva
, and
S.
Pantano
, “
The SIRAH 2.0 force field: Altius, fortius, citius
,”
J. Chem. Theory Comput.
15
(
4
),
2719
2733
(
2019
).
71.
P. G.
Garay
,
E. E.
Barrera
, and
S.
Pantano
, “
Post-translational modifications at the coarse-grained level with the SIRAH force field
,”
J. Chem. Inf. Model.
60
(
2
),
964
973
(
2019
).
72.
F.
Klein
,
D.
Cáceres
,
M. A.
Carrasco
,
J. C.
Tapia
,
J.
Caballero
,
J.
Alzate-Morales
, and
S.
Pantano
, “
Coarse-grained parameters for divalent cations within the SIRAH force field
,”
J. Chem. Inf. Model.
60
(
8
),
3935
3943
(
2020
).
73.
E. E.
Barrera
,
M. R.
Machado
, and
S.
Pantano
, “
Fat SIRAH: Coarse-grained phospholipids to explore membrane–protein dynamics
,”
J. Chem. Theory Comput.
15
(
10
),
5674
5688
(
2019
).
74.
P. D.
Dans
,
A.
Zeida
,
M. R.
Machado
, and
S.
Pantano
, “
A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics
,”
J. Chem. Theory Comput.
6
(
5
),
1711
1725
(
2010
).
75.
F.
Klein
,
E. E.
Barrera
, and
S.
Pantano
, “
Assessing SIRAH’s capability to simulate intrinsically disordered proteins and peptides
,”
J. Chem. Theory Comput.
17
(
2
),
599
604
(
2021
).
76.
M. R.
Machado
and
S.
Pantano
, “
Exploring Lacl–DNA dynamics by multiscale simulations using the SIRAH force field
,”
J. Chem. Theory Comput.
11
(
10
),
5012
5023
(
2015
).
77.
P. D.
Dans
,
L.
Darré
,
M. R.
Machado
,
A.
Zeida
,
A. F.
Brandner
, and
S.
Pantano
, “
Assessing the accuracy of the SIRAH force field to model DNA at coarse grain level
,” in
Advances in Bioinformatics and Computational Biology: 8th Brazilian Symposium on Bioinformatics, BSB 2013, Recife, Brazil, November 3–7, 2013, Proceedings
(
Springer
,
2013
), pp.
71
81
.
78.
C. A.
Davey
,
D. F.
Sargent
,
K.
Luger
,
A. W.
Maeder
, and
T. J.
Richmond
, “
Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution
,”
J. Mol. Biol.
319
(
5
),
1097
1113
(
2002
).
79.
D.
Vasudevan
,
E. Y. D.
Chua
, and
C. A.
Davey
, “
Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence
,”
J. Mol. Biol.
403
(
1
),
1
10
(
2010
).
80.
M. P.
Jacobson
,
R. A.
Friesner
,
Z.
Xiang
, and
B.
Honig
, “
On the role of the crystal environment in determining protein side-chain conformations
,”
J. Mol. Biol.
320
(
3
),
597
608
(
2002
).
81.
M. P.
Jacobson
,
D. L.
Pincus
,
C. S.
Rapp
,
T. J.
Day
,
B.
Honig
,
D. E.
Shaw
, and
R. A.
Friesner
, “
A hierarchical approach to all-atom protein loop prediction
,”
Proteins: Struct., Funct., Bioinf.
55
(
2
),
351
367
(
2004
).
82.
C.
Tian
,
K.
Kasavajhala
,
K. A. A.
Belfon
,
L.
Raguette
,
H.
Huang
,
A. N.
Migues
,
J.
Bickel
,
Y.
Wang
,
J.
Pincay
,
Q.
Wu
, and
C.
Simmerling
, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
(
1
),
528
552
(
2020
).
83.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
(
21
),
3863
3871
(
2014
).
84.
I. S.
Joung
and
T. E.
Cheatham
III
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
(
30
),
9020
9041
(
2008
).
85.
Z.
Li
,
L. F.
Song
,
P.
Li
, and
K. M.
Merz
, Jr.
, “
Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models
,”
J. Chem. Theory Comput.
16
(
7
),
4429
4442
(
2020
).
86.
M.
Kulkarni
,
C.
Yang
, and
Y.
Pak
, “
Refined alkali metal ion parameters for the OPC water model
,”
Bull. Korean Chem. Soc.
39
(
8
),
931
935
(
2018
).
87.
D. A.
Case
,
T. E.
Cheatham
III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
, “
The Amber biomolecular simulation programs
,”
J. Comput. Chem.
26
(
16
),
1668
1688
(
2005
).
88.
H. C.
Andersen
, “
Rattle: A ‘velocity’ version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
(
1
),
24
34
(
1983
).
89.
D. E.
Shaw
,
J.
Grossman
,
J. A.
Bank
,
B.
Batson
,
J. A.
Butts
,
J. C.
Chao
,
M. M.
Deneroff
,
R. O.
Dror
,
A.
Even
, and
C. H.
Fenton
, “
Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer
,” in
SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2014
), pp.
41
53
.
90.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
Gromacs: Fast, flexible, and free
,”
J. Comput. Chem.
26
(
16
),
1701
1718
(
2005
).
91.
T. J.
Dolinsky
,
J. E.
Nielsen
,
J. A.
McCammon
, and
N. A.
Baker
, “
PDB2PQR: An automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations
,”
Nucleic Acids Res.
32
,
W665
W667
(
2004
).
92.
L.
Darré
,
M. R.
Machado
,
P. D.
Dans
,
F. E.
Herrera
, and
S.
Pantano
, “
Another coarse grain model for aqueous solvation: WAT FOUR?
,”
J. Chem. Theory Comput.
6
(
12
),
3793
3807
(
2010
).
93.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
(
1
),
014101
(
2007
).
94.
M. R.
Machado
and
S.
Pantano
, “
SIRAH tools: Mapping, backmapping and visualization of coarse-grained models
,”
Bioinformatics
32
(
10
),
1568
1570
(
2016
).
95.
J.
Parsons
,
J. B.
Holmes
,
J. M.
Rojas
,
J.
Tsai
, and
C. E. M.
Strauss
, “
Practical conversion from torsion space to Cartesian space for in silico protein synthesis
,”
J. Comput. Chem.
26
(
10
),
1063
1068
(
2005
).
96.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
(
8
),
3696
3713
(
2015
).
97.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
D. S.
Cerutti
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
N.
Forouzesh
,
T. J.
Giese
,
A. W.
Götz
,
H.
Gohlke
et al, “
Ambertools
,”
J. Chem. Inf. Model.
63
(
20
),
6183
6191
(
2023
).
98.
D.
Frishman
and
P.
Argos
, “
Knowledge-based protein secondary structure assignment
,”
Proteins: Struct., Funct., Bioinf.
23
(
4
),
566
579
(
1995
).
99.
R.
Lavery
,
M.
Moakher
,
J. H.
Maddocks
,
D.
Petkeviciute
, and
K.
Zakrzewska
, “
Conformational analysis of nucleic acids revisited: Curves+
,”
Nucleic Acids Res.
37
(
17
),
5917
5929
(
2009
).
100.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
String method for the study of rare events
,”
Phys. Rev. B
66
(
5
),
052301
(
2002
).
101.
C.
Qiu
and
T.
Qian
, “
Numerical study of the phase slip in two-dimensional superconducting strips
,”
Phys. Rev. B
77
(
17
),
174517
(
2008
).
102.
M.
Herdin
,
N.
Czink
,
H.
Ozcelik
, and
E.
Bonek
, “
Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels
,” in
2005 IEEE 61st Vehicular Technology Conference
(
IEEE
,
2005
), Vol.
1
, pp.
136
140
.
103.
D.
Bhattacharyya
and
M.
Bansal
, “
Local variability and base sequence effects in DNA crystal structures
,”
J. Biomol. Struct. Dyn.
8
(
3
),
539
572
(
1990
).
104.
I.
Beššeová
,
P.
Banáš
,
P.
Kührová
,
P.
Košinová
,
M.
Otyepka
, and
J.
Šponer
, “
Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration
,”
J. Phys. Chem. B
116
,
9899
(
2012
).
105.
M.
Bansal
,
D.
Bhattacharyya
, and
B.
Ravi
, “
NUPARM and NUCGEN: Software for analysis and generation of sequence dependent nucleic acid structures
,”
Bioinformatics
11
(
3
),
281
287
(
1995
).
106.
I. M.
Kulić
and
H.
Schiessel
, “
Chromatin dynamics: Nucleosomes go mobile through twist defects
,”
Phys. Rev. Lett.
91
(
14
),
148103
(
2003
).
107.
T. J.
Richmond
and
C. A.
Davey
, “
The structure of DNA in the nucleosome core
,”
Nature
423
(
6936
),
145
150
(
2003
).
108.
R. K.
Suto
,
R. S.
Edayathumangalam
,
C. L.
White
,
C.
Melander
,
J. M.
Gottesfeld
,
P. B.
Dervan
, and
K.
Luger
, “
Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands
,”
J. Mol. Biol.
326
(
2
),
371
380
(
2003
).
109.
J. M.
Gottesfeld
,
J. M.
Belitsky
,
C.
Melander
,
P. B.
Dervan
, and
K.
Luger
, “
Blocking transcription through a nucleosome with synthetic DNA ligands
,”
J. Mol. Biol.
321
(
2
),
249
263
(
2002
).
110.
J.
Winger
,
I. M.
Nodelman
,
R. F.
Levendosky
, and
G. D.
Bowman
, “
A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA
,”
Elife
7
,
e34100
(
2018
).
111.
A.
Sabantsev
,
R. F.
Levendosky
,
X.
Zhuang
,
G. D.
Bowman
, and
S.
Deindl
, “
Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling
,”
Nat. Commun.
10
(
1
),
1720
(
2019
).
112.
M.
Li
,
X.
Xia
,
Y.
Tian
,
Q.
Jia
,
X.
Liu
,
Y.
Lu
,
M.
Li
,
X.
Li
, and
Z.
Chen
, “
Mechanism of DNA translocation underlying chromatin remodelling by Snf2
,”
Nature
567
(
7748
),
409
413
(
2019
).
113.
Y.
Lorch
,
B.
Davis
, and
R. D.
Kornberg
, “
Chromatin remodeling by DNA bending, not twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
5
),
1329
1332
(
2005
).
114.
R.
Strohner
,
M.
Wachsmuth
,
K.
Dachauer
,
J.
Mazurkiewicz
,
J.
Hochstatter
,
K.
Rippe
, and
G.
Längst
, “
A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling
,”
Nat. Struct. Mol. Biol.
12
(
8
),
683
690
(
2005
).
115.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
, “
Everything you wanted to know about Markov state models but were afraid to ask
,”
Methods
52
(
1
),
99
105
(
2010
).
116.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
(
7
),
2386
2396
(
2018
).
117.
A. K.
Michael
,
R. S.
Grand
,
L.
Isbel
,
S.
Cavadini
,
Z.
Kozicka
,
G.
Kempf
,
R. D.
Bunker
,
A. D.
Schenk
,
A.
Graff-Meyer
,
G. R.
Pathare
et al, “
Mechanisms of OCT4-SOX2 motif readout on nucleosomes
,”
Science
368
(
6498
),
1460
1465
(
2020
).
118.
X.
Liu
,
M.
Li
,
X.
Xia
,
X.
Li
, and
Z.
Chen
, “
Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure
,”
Nature
544
(
7651
),
440
445
(
2017
).
You do not currently have access to this content.