Resonant vibrational–electronic (vibronic) couplings in donor–acceptor systems may play a crucial role in driving non-adiabatic internal conversion reported in natural photosynthesis, organic photovoltaic polymers, and singlet exciton fission. Quantum beats arising from impulsive excitation are often employed as spectroscopic reporters of the specific vibrational modes driving this process. However, distinguishing these promoter modes from spectator modes, which do not participate in vibronic mixing and simply accompany ultrafast internal conversion, remains a challenge. This is so because vibrational quantum beats arising from uncoupled monomers can modulate pump–probe transients by themselves. In this paper, we show that vibronic mixing induces quantum beats whose amplitude is anisotropic with respect to the polarization of the light. We propose a readily implementable polarization-controlled two-dimensional electronic spectroscopy experiment to uniquely identify signatures of excited state vibronic resonance using ground state quantum beats by discriminating against vibrational motions (and corresponding quantum beats) that are simply spectators. Through analytical expressions and simulation of two-dimensional electronic spectra, we show that the resulting 2D spectra are expected to exhibit distinct spectral lineshapes with a strong temperature dependence that arises solely due to the excited state vibronic mixing. Our findings suggest an interesting experiment to decipher the presence of excited state vibronic resonances.

1.
D.
Polli
,
P.
Altoè
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
, “
Conical intersection dynamics of the primary photoisomerization event in vision
,”
Nature
467
,
440
443
(
2010
).
2.
K. A.
Kitney-Hayes
,
A. A.
Ferro
,
V.
Tiwari
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy at a conical intersection
,”
J. Chem. Phys.
140
,
124312
(
2014
).
3.
B. C.
Paulus
,
S. L.
Adelman
,
L. L.
Jamula
, and
J. K.
McCusker
, “
Leveraging excited-state coherence for synthetic control of ultrafast dynamics
,”
Nature
582
,
214
218
(
2020
).
4.
J. M.
Womick
and
A. M.
Moran
, “
Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes
,”
J. Phys. Chem. B
115
,
1347
1356
(
2011
).
5.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
,
327
352
(
2018
).
6.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
7.
A.
Bhattacharyya
,
A.
Sahu
,
S.
Patra
, and
V.
Tiwari
, “
Low- and high-frequency vibrations synergistically enhance singlet exciton fission through robust vibronic resonances
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2310124120
(
2023
).
8.
A.
De Sio
and
C.
Lienau
, “
Vibronic coupling in organic semiconductors for photovoltaics
,”
Phys. Chem. Chem. Phys.
19
,
18813
18830
(
2017
).
9.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
1208
(
2013
).
10.
H.-G.
Duan
,
A.
Jha
,
L.
Chen
,
V.
Tiwari
,
R. J.
Cogdell
,
K.
Ashraf
,
V. I.
Prokhorenko
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Quantum coherent energy transport in the Fenna–Matthews–Olson complex at low temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2212630119
(
2022
).
11.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J. P.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
786
(
2018
).
12.
J. S.
Higgins
,
M. A.
Allodi
,
L. T.
Lloyd
,
J. P.
Otto
,
S. H.
Sohail
,
R. G.
Saer
,
R. E.
Wood
,
S. C.
Massey
,
P.-C.
Ting
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2112817118
(
2021
).
13.
S. Y.
Kim
,
C. H.
Kim
,
M.
Park
,
K. C.
Ko
,
J. Y.
Lee
, and
T.
Joo
, “
Coherent nuclear wave packets generated by ultrafast intramolecular charge-transfer reaction
,”
J. Phys. Chem. Lett.
3
,
2761
2766
(
2012
).
14.
J. M.
Jean
and
G. R.
Fleming
, “
Competition between energy and phase relaxation in electronic curve crossing processes
,”
J. Chem. Phys.
103
,
2092
2101
(
1995
).
15.
M.
Andrzejak
,
T.
Skóra
, and
P.
Petelenz
, “
Is vibrational coherence a byproduct of singlet exciton fission?
,”
J. Phys. Chem. C
123
,
91
101
(
2019
).
16.
W.
Qian
and
D. M.
Jonas
, “
Role of cyclic sets of transition dipoles in the pump–probe polarization anisotropy: Application to square symmetric molecules and perpendicular chromophore pairs
,”
J. Chem. Phys.
119
,
1611
1622
(
2003
).
17.
D. A.
Farrow
,
W.
Qian
,
E. R.
Smith
,
A. A.
Ferro
, and
D. M.
Jonas
, “
Polarized pump-probe measurements of electronic motion via a conical intersection
,”
J. Chem. Phys.
128
,
144510
(
2008
).
18.
D. A.
Farrow
,
E. R.
Smith
,
W.
Qian
, and
D. M.
Jonas
, “
The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules
,”
J. Chem. Phys.
129
,
174509
(
2008
).
19.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
20.
A.
Sahu
and
V.
Tiwari
, “
Vibrations that do not promote vibronic coupling can dominate observed lineshapes in two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
14
,
4617
4624
(
2023
).
21.
A.
Sahu
,
J. S.
Kurian
, and
V.
Tiwari
, “
Vibronic resonance is inadequately described by one-particle basis sets
,”
J. Chem. Phys.
153
,
224114
(
2020
).
22.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
,
154308
(
2017
).
23.
D.
Paleček
,
P.
Edlund
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center
,”
Sci. Adv.
3
,
e1603141
(
2017
).
24.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
25.
V. R.
Policht
,
A.
Niedringhaus
, and
J. P.
Ogilvie
, “
Characterization of vibrational coherence in monomeric bacteriochlorophyll a by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
9
,
6631
6637
(
2018
).
26.
M.
Rätsep
,
Z.-L.
Cai
,
J. R.
Reimers
, and
A.
Freiberg
, “
Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a
,”
J. Chem. Phys.
134
,
024506
(
2011
).
27.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
, “
Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring
,”
J. Phys. Chem. Lett.
8
,
2344
2349
(
2017
).
28.
V. R.
Policht
,
A.
Niedringhaus
,
R.
Willow
,
P. D.
Laible
,
D. F.
Bocian
,
C.
Kirmaier
,
D.
Holten
,
T.
Mančal
, and
J. P.
Ogilvie
, “
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
,”
Sci. Adv.
8
,
eabk0953
(
2022
).
29.
A.
Witkowski
and
W.
Moffitt
, “
Electronic spectra of dimers: Derivation of the fundamental vibronic equation
,”
J. Chem. Phys.
33
,
872
875
(
1960
).
30.
R. L.
Fulton
and
M.
Gouterman
, “
Vibronic coupling. I. Mathematical treatment for two electronic states
,”
J. Chem. Phys.
35
,
1059
1071
(
1961
).
31.
T.
Förster
, in
Modern Quantum Chemistry
, edited by
O.
Sinanoglu
(
Academic Press Inc.
,
New York
,
1996
), p.
93
.
32.
V.
Tiwari
and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer
,”
J. Chem. Phys.
148
,
084308
(
2018
).
33.
V.
Tiwari
, “
Non-adiabatic mechanism for photosynthetic energy transfer and all-optical determination of concentration using femtosecond lasers
,” Ph.D. thesis,
University of Colorado
,
Boulder
,
2014
.
34.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
, “
Vibronic enhancement of Algae Light Harvesting
,”
Chem
1
,
858
872
(
2016
).
35.
M.
Maiuri
,
E. E.
Ostroumov
,
R. G.
Saer
,
R. E.
Blankenship
, and
G. D.
Scholes
, “
Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis
,”
Nat. Chem.
10
,
177
183
(
2018
).
36.
I. S.
Ryu
,
H.
Dong
, and
G. R.
Fleming
, “
Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center
,”
J. Phys. Chem. B
118
,
1381
1388
(
2014
).
37.
J. M.
Womick
,
B. A.
West
,
N. F.
Scherer
, and
A. M.
Moran
, “
Vibronic effects in the spectroscopy and dynamics of C-phycocyanin
,”
J. Phys. B: At. Mol. Opt. Phys.
45
,
154016
(
2012
).
38.
J. M.
Womick
and
A. M.
Moran
, “
Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin
,”
J. Phys. Chem. B
113
,
15747
15759
(
2009
).
39.
J. M.
Womick
and
A. M.
Moran
, “
Nature of excited states and relaxation mechanisms in C-phycocyanin
,”
J. Phys. Chem. B
113
,
15771
15782
(
2009
).
40.
V.
Butkus
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Vibrational vs. electronic coherences in 2D spectrum of molecular systems
,”
Chem. Phys. Lett.
545
,
40
43
(
2012
).
41.
M. T.
Zanni
,
N.-H.
Ge
,
Y. S.
Kim
, and
R. M.
Hochstrasser
, “
Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
11265
11270
(
2001
).
42.
K. M.
Farrell
,
N.
Yang
, and
M. T.
Zanni
, “
A polarization scheme that resolves cross-peaks with transient absorption and eliminates diagonal peaks in 2D spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2117398119
(
2022
).
43.
V.
Perlík
,
C.
Lincoln
,
F.
Šanda
, and
J.
Hauer
, “
Distinguishing electronic and vibronic coherence in 2D spectra by their temperature dependence
,”
J. Phys. Chem. Lett.
5
,
404
407
(
2014
).
44.
Y.
Fujihashi
,
G. R.
Fleming
, and
A.
Ishizaki
, “
Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra
,”
J. Chem. Phys.
142
,
212403
(
2015
).
45.
T.
Kim
,
C.
Lin
,
J. D.
Schultz
,
R. M.
Young
, and
M. R.
Wasielewski
, “
π-stacking-dependent vibronic couplings drive excited-state dynamics in perylenediimide assemblies
,”
J. Am. Chem. Soc.
144
,
11386
11396
(
2022
).
46.
A.
Zilian
and
J. C.
Wright
, “
Polarization effects in four-wave mixing of isotropic samples
,”
Mol. Phys.
87
,
1261
1271
(
1996
).
47.
F. D.
Fuller
and
J. P.
Ogilvie
, “
Experimental implementations of two-dimensional Fourier transform electronic spectroscopy
,”
Annu. Rev. Phys. Chem.
66
,
667
690
(
2015
).
48.
V.
Tiwari
, “
Multidimensional electronic spectroscopy in high-definition—Combining spectral, temporal and spatial resolutions
,”
J. Chem. Phys.
54
,
230901
(
2021
).
You do not currently have access to this content.