We have investigated the liquid–vapor interface of aqueous acetic acid solution through calculations of the structure and vibrational sum frequency generation (VSFG) spectra of the interfaces for varying concentrations of the acetic acid (AA). Our findings reveal the surface propensity of the AA molecules. As the concentration of AA increases, more AA molecules are found to be present in the interfacial region. The AA molecules at the interface are found to be oriented in a manner where the hydrophobic part (methyl chain) is oriented toward the vapor phase and the hydrophilic part is pointed toward the liquid phase. The total VSFG spectrum reveals that the intensity of the peak of dangling OH groups of water around 3750 cm−1 decreases when the concentration of AA increases, while the intensity of the peak around 3550 cm−1 due to OH groups having hydrogen bonds between water and AA molecules increases. Furthermore, the latter peak is redshifted as the AA concentration increases, which is due to the partial cancellation between the positive response of water OH modes and the negative response of the OH modes of AA molecules. It is also noted that the AA molecules make the interfacial water more structured by making hydrogen bonds with its otherwise dangling OH modes at the surface.

1.
A.
Chebbi
and
P.
Carlier
,
Atmos. Environ.
30
,
4233
4249
(
1996
).
2.
R. W.
Talbot
,
J. E.
Dibb
,
B. L.
Lefer
,
E. M.
Scheuer
,
J. D.
Bradshaw
,
S. T.
Sandholm
,
S.
Smyth
,
D. R.
Blake
,
N.
Blake
,
G. W.
Sachse
et al,
J. Geophys. Res.: Atmos.
102
,
28303
28313
, (
1997
).
3.
Y.
Fukuda
,
J. Electrochem. Soc.
138
,
1238
(
1991
).
4.
C.
Leygraf
,
I. O.
Wallinder
,
J.
Tidblad
, and
T.
Graedel
,
Atmospheric Corrosion
(
John Wiley and Sons
,
Hoboken, NJ
,
2016
).
5.
A.
Krepelova
,
T.
Bartels-Rausch
,
M. A.
Brown
,
H.
Bluhm
, and
M.
Ammann
,
J. Phys. Chem. A
117
,
401
409
(
2013
).
6.
Y. R.
Shen
,
Fundamental of Sum-Frequency Spectroscopy
(
Cambridge University Press
,
2016
).
7.
A.
Morita
,
Theory of Sum Frequency Generation Spectroscopy
(
Springer
,
Singapore
,
2018
).
8.
C. M.
Johnson
,
E.
Tyrode
,
S.
Baldelli
,
M. W.
Rutland
, and
C.
Leygraf
,
J. Phys. Chem. B
109
,
321
328
(
2005
).
9.
E.
Tyrode
,
C. M.
Johnson
,
S.
Baldelli
,
C.
Leygraf
, and
M. W.
Rutland
,
J. Phys. Chem. B
109
,
329
341
(
2005
).
10.
C. J.
Moll
,
J.
Versluis
, and
H. J.
Bakker
,
J. Phys. Chem. B
126
,
270
277
(
2022
).
11.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
390
(
2000
).
12.
D. S.
Walker
,
D. K.
Hore
, and
G. L.
Richmond
,
J. Phys. Chem. B
110
,
20451
20459
(
2006
).
13.
D. S.
Walker
and
G. L.
Richmond
,
J. Am. Chem. Soc.
129
,
9446
9451
(
2007
).
14.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
5816
(
2008
).
15.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
,
Chem. Rev.
114
,
8447
8470
(
2014
).
16.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
,
673
685
(
2002
).
17.
A.
Morita
,
J. Phys. Chem. B
110
,
3158
3163
(
2006
).
18.
T.
Ishiyama
and
A.
Morita
,
J. Chem. Phys.
131
,
244714
(
2009
).
19.
A.
Perry
,
H.
Ahlborn
,
B.
Space
, and
P. B.
Moore
,
J. Chem. Phys.
118
,
8411
8419
(
2003
).
20.
A.
Perry
,
C.
Neipert
,
C.
Ridley
,
B.
Space
, and
P. B.
Moore
,
Phys. Rev. E
71
,
050601
(
2005
).
21.
A.
Perry
,
C.
Neipert
,
B.
Space
, and
P. B.
Moore
,
Chem. Rev.
106
,
1234
1258
(
2006
).
22.
R.
Khatib
,
T.
Hasegawa
,
M.
Sulpizi
,
E. H. G.
Backus
,
M.
Bonn
, and
Y.
Nagata
,
J. Phys. Chem. C
120
,
18665
18673
(
2016
).
23.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
,
J. Chem. Phys.
143
,
124702
(
2015
).
24.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.-P.
Gaigeot
,
J. Phys. Chem. Lett.
4
,
83
87
(
2013
).
25.
R.
Khatib
and
M.
Sulpizi
,
J. Phys. Chem. Lett.
8
,
1310
1314
(
2017
).
26.
B. M.
Auer
and
J. L.
Skinner
,
J. Chem. Phys.
129
,
214705
(
2008
).
27.
B. M.
Auer
and
J. L.
Skinner
,
J. Phys. Chem. B
113
,
4125
4130
(
2009
).
28.
P. A.
Pieniazek
,
C. J.
Tainter
, and
J. L.
Skinner
,
J. Chem. Phys.
135
,
044701
(
2011
).
29.
J. L.
Skinner
,
B. M.
Auer
, and
Y.-S.
Lin
,
Adv. Chem. Phys.
142
,
59
103
(
2009
).
30.
S.
Roy
,
S. M.
Gruenbaum
, and
J. L.
Skinner
,
J. Chem. Phys.
141
,
18C502
(
2014
).
31.
Y.
Ni
and
J. L.
Skinner
,
J. Chem. Phys.
145
,
031103
(
2016
).
32.
R.
Malik
,
S.
Saito
, and
A.
Chandra
,
Phys. Chem. Chem. Phys.
26
,
17065
17074
(
2024
).
33.
B.
Das
,
B.
Sharma
, and
A.
Chandra
,
J. Phys. Chem. C
122
,
9374
9388
(
2018
).
34.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
2164
(
2009
).
35.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
36.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley-Interscience
,
Hoboken, NJ
,
2003
).
37.
R. W.
Boyd
,
Nonlinear Optics
(
Elsevier
,
New York
,
2003
).
38.
G. L.
Richmond
,
Chem. Rev.
102
,
2693
2724
(
2002
).
40.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
120
,
8107
8117
(
2004
).
41.
S. A.
Corcelli
and
J. L.
Skinner
,
J. Phys. Chem. A
109
,
6154
6165
(
2005
).
42.
B.
Auer
,
R.
Kumar
,
J. R.
Schmidt
, and
J. L.
Skinner
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
14215
14220
(
2007
).
43.
Y.-S.
Lin
,
B. M.
Auer
, and
J. L.
Skinner
,
J. Chem. Phys.
131
,
144511
(
2009
).
44.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
, and
H.
Nakatsuji
,
Gaussian 16, Revision A.03
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
45.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
321
(
2001
).
46.
A. C.
Belch
and
S. A.
Rice
,
J. Chem. Phys.
78
,
4817
4823
(
1983
).
47.
R.
Malik
,
A.
Chandra
,
B.
Das
, and
A.
Chandra
,
J. Phys. Chem. B
127
,
2488
2498
(
2023
).
48.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
49.
D. A.
Case
,
R. M.
Betz
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
T. A.
Darden
,
R. E.
Duke
,
T. J.
Giese
,
H.
Gohlke
,
A. W.
Goetz
,
N.
Homeyer
,
S.
Izadi
,
P.
Janowski
,
J.
Kaus
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
T.
Luchko
,
R.
Luo
,
B.
Madej
,
D.
Mermelstein
,
K. M.
Merz
,
G.
Monard
,
H.
Nguyen
,
H. T.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
C. L.
Simmerling
,
W. M.
Botello-Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
, and
P. A.
Kollman
,
AMBER 2016
,
University of California
,
San Francisco, CA
,
2016
.
50.
S.
Nihonyanagi
,
R.
Kusaka
,
K.
Inoue
,
A.
Adhikari
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
143
,
124707
(
2015
).
You do not currently have access to this content.