This study introduces a machine-learning approach to enhance signal-to-noise ratios in scattering-type scanning near-field optical microscopy (s-SNOM). While s-SNOM offers a high spatial resolution, its effectiveness is often hindered by low signal levels, particularly in weakly absorbing samples. To address these challenges, we utilize a data-driven “patch-based” machine learning reconstruction method, incorporating modern generative adversarial neural networks (CycleGANs) for denoising s-SNOM images. This method allows for flexible reconstruction of images of arbitrary sizes, a critical capability given the variable nature of scanned sample areas in point-scanning probe-based microscopies. The CycleGAN model is trained on unpaired sets of images captured at both rapid and extended acquisition times, thereby modeling instrument noise while preserving essential topographical and molecular information. The results show significant improvements in image quality, as indicated by higher structural similarity index and peak signal-to-noise ratio values, comparable to those obtained from images captured with four times the integration time. This method not only enhances image quality but also has the potential to reduce the overall data acquisition time, making high-resolution s-SNOM imaging more feasible for a wide range of biological and materials science applications.

1.
X.
Chen
,
Z. A.
Al-Mualem
, and
C. R.
Baiz
, “
Lipid landscapes: Vibrational spectroscopy for decoding membrane complexity
,”
Annu. Rev. Phys. Chem.
75
,
283
(
2024
).
2.
K.
Ataka
and
J.
Heberle
, “
Biochemical applications of surface-enhanced infrared absorption spectroscopy
,”
Anal. Bioanal. Chem.
388
,
47
54
(
2007
).
3.
A.
Barth
, “
Infrared spectroscopy of proteins
,”
Biochim. Biophys. Acta, Bioenerg.
1767
(
9
),
1073
1101
(
2007
).
4.
W. K.
Surewicz
,
H. H.
Mantsch
, and
D.
Chapman
, “
Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment
,”
Biochemistry
32
(
2
),
389
394
(
1993
).
5.
C. R.
Baiz
,
C. S.
Peng
,
M. E.
Reppert
,
K. C.
Jones
, and
A.
Tokmakoff
, “
Coherent two-dimensional infrared spectroscopy: Quantitative analysis of protein secondary structure in solution
,”
Analyst
137
(
8
),
1793
1799
(
2012
).
6.
D. M.
Byler
and
H.
Susi
, “
Examination of the secondary structure of proteins by deconvolved FTIR spectra
,”
Biopolymers
25
(
3
),
469
487
(
1986
).
7.
M.
Rüegg
,
V.
Metzger
, and
H.
Susi
, “
Computer analyses of characteristic infrared bands of globular proteins
,”
Biopolymers
14
(
7
),
1465
1471
(
1975
).
8.
C. R.
Baiz
,
B.
Błasiak
,
J.
Bredenbeck
,
M.
Cho
,
J.-H.
Choi
,
S. A.
Corcelli
,
A. G.
Dijkstra
,
C.-J.
Feng
,
S.
Garrett-Roe
,
N.-H.
Ge
et al, “
Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction
,”
Chem. Rev.
120
(
15
),
7152
7218
(
2020
).
9.
F.
Huth
,
A.
Govyadinov
,
S.
Amarie
,
W.
Nuansing
,
F.
Keilmann
, and
R.
Hillenbrand
, “
Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution
,”
Nano Lett.
12
(
8
),
3973
3978
(
2012
).
10.
S. A.
Donges
,
R. P.
Cline
,
S. E.
Zeltmann
,
J.
Nishida
,
B.
Metzger
,
A. M.
Minor
,
J. D.
Eaves
, and
M. B.
Raschke
, “
Multidimensional nano-imaging of structure, coupling, and disorder in molecular materials
,”
Nano Lett.
21
(
15
),
6463
6470
(
2021
).
11.
S.
Berweger
,
D. M.
Nguyen
,
E. A.
Muller
,
H. A.
Bechtel
,
T. T.
Perkins
, and
M. B.
Raschke
, “
Nano-chemical infrared imaging of membrane proteins in lipid bilayers
,”
J. Am. Chem. Soc.
135
(
49
),
18292
18295
(
2013
).
12.
K.
Kanevche
,
D. J.
Burr
,
D. J.
Nürnberg
,
P. K.
Hass
,
A.
Elsaesser
, and
J.
Heberle
, “
Infrared nanoscopy and tomography of intracellular structures
,”
Commun. Biol.
4
(
1
),
1341
(
2021
).
13.
S.
Mastel
,
A. A.
Govyadinov
,
C.
Maissen
,
A.
Chuvilin
,
A.
Berger
, and
R.
Hillenbrand
, “
Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution
,”
ACS Photonics
5
(
8
),
3372
3378
(
2018
).
14.
K. J.
Kaltenecker
,
T.
Gölz
,
E.
Bau
, and
F.
Keilmann
, “
Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water
,”
Sci. Rep.
11
(
1
),
21860
(
2021
).
15.
J. M.
Larson
,
H. A.
Bechtel
, and
R.
Kostecki
, “
Detection and signal processing for near-field nanoscale Fourier transform infrared spectroscopy
,”
Adv. Funct. Mater.
34
,
2406643
(
2024
).
16.
M. B.
Raschke
,
L.
Molina
,
T.
Elsaesser
,
D. H.
Kim
,
W.
Knoll
, and
K.
Hinrichs
, “
Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution
,”
ChemPhysChem
6
(
10
),
2197
2203
(
2005
).
17.
I.
Amenabar
,
S.
Poly
,
W.
Nuansing
,
E. H.
Hubrich
,
A. A.
Govyadinov
,
F.
Huth
,
R.
Krutokhvostov
,
L.
Zhang
,
M.
Knez
,
J.
Heberle
et al, “
Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy
,”
Nat. Commun.
4
(
1
),
2890
(
2013
).
18.
Y.-H.
Lu
,
J. M.
Larson
,
A.
Baskin
,
X.
Zhao
,
P. D.
Ashby
,
D.
Prendergast
,
H. A.
Bechtel
,
R.
Kostecki
, and
M.
Salmeron
, “
Infrared nanospectroscopy at the graphene–electrolyte interface
,”
Nano Lett.
19
(
8
),
5388
5393
(
2019
).
19.
E. T.
Ritchie
,
C. B.
Casper
,
T. A.
Lee
, and
J. M.
Atkin
, “
Quantitative local conductivity imaging of semiconductors using near-field optical microscopy
,”
J. Phys. Chem. C
126
(
9
),
4515
4521
(
2022
).
20.
N.
Ocelic
,
A.
Huber
, and
R.
Hillenbrand
, “
Pseudoheterodyne detection for background-free near-field spectroscopy
,”
Appl. Phys. Lett.
89
(
10
),
101124
(
2006
).
21.
C.
Moreno
,
J.
Alda
,
E.
Kinzel
, and
G.
Boreman
, “
Phase imaging and detection in pseudo-heterodyne scattering scanning near-field optical microscopy measurements
,”
Appl. Opt.
56
(
4
),
1037
1045
(
2017
).
22.
M.
Schnell
,
P. S.
Carney
, and
R.
Hillenbrand
, “
Synthetic optical holography for rapid nanoimaging
,”
Nat. Commun.
5
(
1
),
3499
(
2014
).
23.
M.
Schnell
,
M.
Goikoetxea
,
I.
Amenabar
,
P. S.
Carney
, and
R.
Hillenbrand
, “
Rapid infrared spectroscopic nanoimaging with nano-FTIR holography
,”
ACS Photonics
7
(
10
),
2878
2885
(
2020
).
24.
A. F.
Scarpettini
and
A. V.
Bragas
, “
Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy
,”
J. Microsc.
257
(
1
),
54
64
(
2015
).
25.
R. F.
Laine
,
G.
Jacquemet
, and
A.
Krull
, “
Imaging in focus: An introduction to denoising bioimages in the era of deep learning
,”
Int. J. Biochem. Cell Biol.
140
,
106077
(
2021
).
26.
J. W.
Pylvänäinen
,
E.
Gómez-de-Mariscal
,
R.
Henriques
, and
G.
Jacquemet
, “
Live-cell imaging in the deep learning era
,”
Curr. Opin. Cell Biol.
85
,
102271
(
2023
).
27.
C.
Belthangady
and
L. A.
Royer
, “
Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
,”
Nat. Methods
16
(
12
),
1215
1225
(
2019
).
28.
S.
Salwig
,
J.
Drefs
, and
J.
Lücke
, “
Zero-shot denoising of microscopy images recorded at high-resolution limits
,”
PLOS Comput. Biol.
20
(
6
),
e1012192
(
2024
).
29.
R. S.
Jebur
,
M. H. B. M.
Zabil
,
D. A.
Hammood
, and
L. K.
Cheng
, “
A comprehensive review of image denoising in deep learning
,”
Multimedia Tools Appl.
83
,
58181
58199
(
2023
).
30.
Y.-I.
Chen
,
Y.-J.
Chang
,
S.-C.
Liao
,
T. D.
Nguyen
,
J.
Yang
,
Y.-A.
Kuo
,
S.
Hong
,
Y.-L.
Liu
,
H. G.
Rylander
III
,
S. R.
Santacruz
et al, “
Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells
,”
Commun. Biol.
5
(
1
),
18
(
2022
).
31.
M.
Hegner
,
P.
Wagner
, and
G.
Semenza
, “
Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy
,”
Surf. Sci. Lett.
291
(
1–2
),
39
46
(
1993
).
32.
P.
Isola
,
J.-Y.
Zhu
,
T.
Zhou
, and
A. A.
Efros
, “
Image-to-image translation with conditional adversarial networks
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(IEEE, Honolulu, HI, 2017), pp.
5967
5976
.
33.
L.
Xu
and
K.
Veeramachaneni
, “
Synthesizing tabular data using generative adversarial networks
,” arXiv:1811.11264 (
2018
).
34.
P.
Eigenschink
,
T.
Reutterer
,
S.
Vamosi
,
R.
Vamosi
,
C.
Sun
, and
K.
Kalcher
, “
Deep generative models for synthetic data: A survey
,”
IEEE Access
11
,
47304
47320
(
2023
).
35.
S.
Reed
et al., “
Generative adversarial text to image synthesis
,” arXiv:1605.05396 (
2016
).
36.
D.
Lee
,
S.
Lee
,
H.
Lee
,
K.
Lee
, and
H.-J.
Lee
, “
Resolution-preserving generative adversarial networks for image enhancement
,”
IEEE Access
7
,
110344
110357
(
2019
).
37.
U.
Demir
and
G.
Unal
, “
Patch-based image inpainting with generative adversarial networks
,” arXiv:1803.07422 (
2018
).
38.
X.
Yi
,
E.
Walia
, and
P.
Babyn
, “
Generative adversarial network in medical imaging: A review
,”
Med. Image Anal.
58
,
101552
(
2019
).
39.
J.-Y.
Zhu
,
T.
Park
,
P.
Isola
, and
A. A.
Efros
, “
Unpaired image-to-image translation using cycle-consistent adversarial networks
,” in
Proceedings of the IEEE International Conference on Computer Vision
(
IEEE
,
2017
), pp.
2223
2232
.
40.
R. C.
Gonzalez
,
Digital Image Processing
(
Pearson Education India
,
2009
).
41.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
, and
L.
Antiga
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
(
NeurIPS
,
2019
), Vol.
32
.
42.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “
U-Net: Convolutional networks for biomedical image segmentation
,” in
Medical Image Computing And Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III
(
Springer
,
2015
), Vol.
18
, pp.
234
241
.
43.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
(
4
),
600
612
(
2004
).
You do not currently have access to this content.