We have developed an efficient scheme for the calculation of transition properties within the four-component relativistic equation-of-motion coupled cluster (EOM-CC) method using the expectation value approach. The calculation of transition properties within the relativistic EOM-CC framework requires the solution of both right and left eigenvectors. The accuracy of the approach has been investigated by calculating low-lying transitions of a Xe atom, a HI molecule, and spin forbidden 1S03P1 and spin allowed 1S01P1 transitions in a few closed shell cations. In addition to the valence spectra, the relativistic EOM-CCSD expectation value approach is particularly suitable for simulating the L-edge x-ray absorption spectrum (XAS). The calculated results show good agreement with the earlier reported theoretical studies and experimental values.

1.
T. C.
Cheam
and
S.
Krimm
, “
Transition dipole interaction in polypeptides: Ab initio calculation of transition dipole parameters
,”
Chem. Phys. Lett.
107
(
6
),
613
616
(
1984
).
2.
C.
Brand
,
W. L.
Meerts
, and
M.
Schmitt
, “
How and why do transition dipole moment orientations depend on conformer structure?
,”
J. Phys. Chem. A
115
(
34
),
9612
9619
(
2011
).
3.
M.
Drobizhev
,
N. S.
Makarov
,
A.
Rebane
,
G.
de la Torre
, and
T.
Torres
, “
Strong two-photon absorption in Push−Pull phthalocyanines: Role of resonance enhancement and permanent dipole moment change upon excitation
,”
J. Phys. Chem. C
112
(
3
),
848
859
(
2008
).
4.
A. M.
Asiri
,
T. R.
Sobahi
,
O. I.
Osman
, and
S. A.
Khan
, “
Photophysical investigation of (D-π-A) DMHP dye: Dipole moments, photochemical quantum yield and fluorescence quantum yield, by solvatochromic shift methods and DFT studies
,”
J. Mol. Struct.
1128
,
636
644
(
2017
).
5.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
Cambridge
,
2009
).
6.
D. J.
Rowe
, “
Equations-of-Motion method and the extended shell model
,”
Rev. Mod. Phys.
40
(
1
),
153
166
(
1968
).
7.
H.
Koch
and
P.
Jørgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
(
5
),
3333
3344
(
1990
).
8.
H. J.
Monkhorst
, “
Calculation of properties with the coupled-cluster method
,”
Int. J. Quantum Chem.
12
(
S11
),
421
432
(
1977
).
9.
D.
Mukherjee
and
P. K.
Mukherjee
, “
A response-function approach to the direct calculation of the transition-energy in a multiple-cluster expansion formalism
,”
Chem. Phys.
39
(
3
),
325
335
(
1979
).
10.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
(
9
),
7029
7039
(
1993
).
11.
H.
Koch
,
R.
Kobayashi
,
A.
Sanchez de Merás
, and
P.
Jørgensen
, “
Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function
,”
J. Chem. Phys.
100
(
6
),
4393
4400
(
1994
).
12.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
, “
A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism
,”
J. Chem. Phys.
146
(
21
),
214111
(
2017
).
13.
K. G.
Dyall
, and
K.
Faegri, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
14.
H.
Pathak
,
B. K.
Sahoo
,
B. P.
Das
,
N.
Vaval
, and
S.
Pal
, “
Relativistic equation-of-motion coupled-cluster method: Application to closed-shell atomic systems
,”
Phys. Rev. A
89
(
4
),
042510
(
2014
).
15.
A.
Shee
,
T.
Saue
,
L.
Visscher
, and
A.
Severo Pereira Gomes
, “
Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states
,”
J. Chem. Phys.
149
(
17
),
174113
(
2018
).
16.
J.
Liu
and
L.
Cheng
, “
Relativistic coupled-cluster and equation-of-motion coupled-cluster methods
,”
WIREs Comput. Mol. Sci.
11
(
6
),
e1536
(
2021
).
17.
H.
Pathak
,
S.
Sasmal
,
M. K.
Nayak
,
N.
Vaval
, and
S.
Pal
, “
Relativistic equation-of-motion coupled-cluster method for the ionization problem: Application to molecules
,”
Phys. Rev. A
90
(
6
),
062501
(
2014
).
18.
B.
Helmich-Paris
,
M.
Repisky
, and
L.
Visscher
, “
Relativistic Cholesky-decomposed density matrix MP2
,”
Chem. Phys.
518
,
38
46
(
2019
).
19.
K.
Surjuse
,
S.
Chamoli
,
M. K.
Nayak
, and
A. K.
Dutta
, “
A low-cost four-component relativistic equation of motion coupled cluster method based on frozen natural spinors: Theory, implementation, and benchmark
,”
J. Chem. Phys.
157
(
20
),
204106
(
2022
).
20.
A.
Zaitsevskii
,
A. V.
Oleynichenko
, and
E.
Eliav
, “
Finite-field calculations of transition properties by the Fock space relativistic coupled cluster method: Transitions between different Fock space sectors
,”
Symmetry
12
(
11
),
1845
(
2020
).
21.
A. V.
Zaitsevskii
,
L. V.
Skripnikov
,
A. V.
Kudrin
,
A. V.
Oleinichenko
,
E.
Eliav
, and
A. V.
Stolyarov
, “
Electronic transition dipole moments in relativistic coupled-cluster theory: The finite-field method
,”
Opt. Spectrosc.
124
(
4
),
451
456
(
2018
).
22.
L.
Visscher
,
E.
Eliav
, and
U.
Kaldor
, “
Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
,”
J. Chem. Phys.
115
(
21
),
9720
9726
(
2001
).
23.
E.
Eliav
and
U.
Kaldor
, “
Relativistic four-component multireference coupled cluster methods: Towards A covariant approach
,” in
Recent Progress in Coupled Cluster Methods: Theory and Applications
, edited by
P.
Cársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Netherlands, Dordrecht
,
2010
), pp.
113
144
.
24.
H. S.
Nataraj
,
M.
Kállay
, and
L.
Visscher
, “
General implementation of the relativistic coupled-cluster method
,”
J. Chem. Phys.
133
(
23
),
234109
(
2010
).
25.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
, “
Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples
,”
J. Chem. Phys.
105
(
19
),
8769
8776
(
1996
).
26.
L. K.
Sorensen
,
T.
Fleig
, and
S.
Olsen
, “
A relativistic four- and two-component generalized-active-space coupled cluster method
,”
Z. Phys. Chem.
224
(
3–4
),
671
680
(
2010
).
27.
X.
Yuan
,
L.
Halbert
,
J. V.
Pototschnig
,
A.
Papadopoulos
,
S.
Coriani
,
L.
Visscher
, and
A. S.
Pereira Gomes
, “
Formulation and implementation of frequency-dependent linear response properties with relativistic coupled cluster theory for GPU-accelerated computer architectures
,”
J. Chem. Theory Comput.
20
(
2
),
677
694
(
2024
).
28.
A. K.
Dutta
,
A.
Manna
,
B.
Jangid
,
K.
Majee
,
K.
Surjuse
,
M.
Mukherjee
,
M.
Thapa
,
S.
Arora
,
S.
Chamoli
,
S.
Haldar
,
S.
Chakraborty
, and
T.
Mukhopadhyay
, “
BAGH: A quantum chemistry software package
,” https://sites.google.com/iitb.ac.in/bagh, accessed 19 September 2023.
29.
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
,
H. J. A.
Jensen
,
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich-Paris
,
J.
Henriksson
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
Di Remigio
,
M.
Repiský
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, “
DIRAC21
,” available at https://doi.org/10.5281/zenodo.4836496, see also http://www.diracprogram.org (
2021
).
30.
L. N.
Koulias
,
D. B.
Williams-Young
,
D. R.
Nascimento
,
A. E. I.
DePrince
, and
X.
Li
, “
Relativistic real-time time-dependent equation-of-motion coupled-cluster
,”
J. Chem. Theory Comput.
15
(
12
),
6617
6624
(
2019
).
31.
M. L.
Vidal
,
P.
Pokhilko
,
A. I.
Krylov
, and
S.
Coriani
, “
Equation-of-Motion coupled-cluster theory to model L-edge X-ray absorption and photoelectron spectra
,”
J. Phys. Chem. Lett.
11
(
19
),
8314
8321
(
2020
).
32.
G.
Racah
, “
Theory of complex spectra. II
,”
Phys. Rev.
62
(
9–10
),
438
462
(
1942
).
33.
K.
Yoshino
and
D. E.
Freeman
, “
Absorption spectrum of xenon in the vacuum-ultraviolet region
,”
J. Opt. Soc. Am. B
2
(
8
),
1268
1274
(
1985
).
34.
H.
Beutler
, “
Über absorption series of argon, krypton and xenon for terms between the two ionization limits 2P03/2 and 2P01/2
,”
Z. Phys.
93
(
3
),
177
196
(
1935
).
35.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
(
4
),
1559
2259
(
2005
).
36.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
, “
Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements
,”
J. Chem. Phys.
119
(
21
),
11113
11123
(
2003
).
37.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
(
11
),
4814
4820
(
2019
).
38.
K. A.
Peterson
and
K. E.
Yousaf
, “
Molecular core-valence correlation effects involving the post-d elements Ga–Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets
,”
J. Chem. Phys.
133
(
17
),
174116
(
2010
).
39.
R. S.
Mulliken
, “
Low electronic states of simple heteropolar diatomic molecules: III. Hydrogen and univalent metal halides
,”
Phys. Rev.
51
(
5
),
310
332
(
1937
).
40.
R. D.
Clear
,
S. J.
Riley
, and
K. R.
Wilson
, “
Energy partitioning and assignment of excited states in the ultraviolet photolysis of HI and DI
,”
J. Chem. Phys.
63
(
4
),
1340
1347
(
1975
).
41.
S. R.
Langford
,
P. M.
Regan
,
A. J.
Orr-Ewing
, and
M. N. R.
Ashfold
, “
On the UV photodissociation dynamics of hydrogen iodide
,”
Chem. Phys.
231
(
2–3
),
245
260
(
1998
).
42.
D. J.
Gendron
and
J. W.
Hepburn
, “
Dynamics of HI photodissociation in the A band absorption via H-atom Doppler spectroscopy
,”
J. Chem. Phys.
109
(
17
),
7205
7213
(
1998
).
43.
P. M.
Regan
,
D.
Ascenzi
,
C.
Clementi
,
M. N. R.
Ashfold
, and
A. J.
Orr-Ewing
, “
The UV photodissociation of HI revisited: REMPI measurements of I(2P) atom spin–orbit branching fractions
,”
Chem. Phys. Lett.
315
(
3–4
),
187
193
(
1999
).
44.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Relativistic configuration interaction calculations on the low-lying electronic states of Hl
,”
Chem. Phys. Lett.
118
(
2
),
192
196
(
1985
).
45.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Electronic dipole and transition moments from the relativistic CI wave function: Application to HI
,”
J. Chem. Phys.
87
(
9
),
5325
5328
(
1987
).
46.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Theoretical study of the negative ions of HBr and HI
,”
Phys. Rev. A
38
(
12
),
6098
6106
(
1988
).
47.
A. B.
Alekseyev
,
H.-P.
Liebermann
,
D. B.
Kokh
, and
R. J.
Buenker
, “
On the ultraviolet photofragmentation of hydrogen iodide
,”
J. Chem. Phys.
113
(
15
),
6174
6185
(
2000
).
48.
A.
Brown
, “
Photodissociation of HI and DI: Polarization of atomic photofragments
,”
J. Chem. Phys.
122
(
8
),
084301
(
2005
).
49.
M. N.
Glukhovtsev
,
A.
Pross
,
M. P.
McGrath
, and
L.
Radom
, “
Extension of Gaussian-2 (G2) theory to bromine- and iodine-containing molecules: Use of effective core potentials
,”
J. Chem. Phys.
103
(
5
),
1878
1885
(
1995
).
50.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Benchmark calculations with correlated molecular wave functions. I. Multireference configuration interaction calculations for the second row diatomic hydrides
,”
J. Chem. Phys.
99
(
3
),
1914
1929
(
1993
).
51.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
et al,
NIST Atomic Spectra Database
(
NIST Standard Reference Database
,
2018
), Vol.
78
.
52.
F.
Egidi
,
S.
Sun
,
J. J.
Goings
,
G.
Scalmani
,
M. J.
Frisch
, and
X.
Li
, “
Two-component noncollinear time-dependent spin density functional theory for excited state calculations
,”
J. Chem. Theory Comput.
13
(
6
),
2591
2603
(
2017
).
53.
T. F.
Stetina
,
J. M.
Kasper
, and
X.
Li
, “
Modeling L2,3-edge X-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory
,”
J. Chem. Phys.
150
(
23
),
234103
(
2019
).
54.
L.
Douillard
,
F.
Jollet
,
C.
Bellin
,
M.
Gautier
, and
J. P.
Duraud
, “
The electronic structure of KNbO3: An XPS and XAS study
,”
J. Phys.: Condens. Matter
6
(
27
),
5039
(
1994
).
55.
L.
Douillard
,
M.
Gautier
,
N.
Thromat
,
M.
Henriot
,
M. J.
Guittet
,
J. P.
Duraud
, and
G.
Tourillon
, “
Local electronic structure of Ce-doped Y2O3: An XPS and XAS study
,”
Phys. Rev. B
49
(
23
),
16171
16180
(
1994
).
56.
S.
Coriani
and
H.
Koch
, “
Communication: X-Ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework
,”
J. Chem. Phys.
143
(
18
),
181103
(
2015
).
57.
L. S.
Cederbaum
,
W.
Domcke
, and
J.
Schirmer
, “
Many-body theory of core holes
,”
Phys. Rev. A
22
(
1
),
206
222
(
1980
).
58.
M. L.
Vidal
,
X.
Feng
,
E.
Epifanovsky
,
A. I.
Krylov
, and
S.
Coriani
, “
New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states
,”
J. Chem. Theory Comput.
15
(
5
),
3117
3133
(
2019
).
59.
M. L.
Vidal
,
A. I.
Krylov
, and
S.
Coriani
, “
Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of ground and excited states
,”
Phys. Chem. Chem. Phys.
22
(
5
),
2693
2703
(
2020
).
60.
L.
Halbert
,
M. L.
Vidal
,
A.
Shee
,
S.
Coriani
, and
A.
Severo Pereira Gomes
, “
Relativistic EOM-CCSD for core-excited and core-ionized state energies based on the four-component Dirac–Coulomb(−Gaunt) Hamiltonian
,”
J. Chem. Theory Comput.
17
(
6
),
3583
3598
(
2021
).
61.
M.
Nakamura
,
M.
Sasanuma
,
S.
Sato
,
M.
Watanabe
,
H.
Yamashita
,
Y.
Iguchi
,
A.
Ejiri
,
S.
Nakai
,
S.
Yamaguchi
,
T.
Sagawa
,
Y.
Nakai
, and
T.
Oshio
, “
Absorption structure near the LII,III edge of argon gas
,”
Phys. Rev. Lett.
21
(
18
),
1303
1305
(
1968
).
62.
S.
Chakraborty
,
T.
Mukhopadhyay
,
M. K.
Nayak
, and
A. K.
Dutta
, “
A relativistic third-order algebraic diagrammatic construction theory for electron detachment, attachment and excitation problems
,” arXiv:2405.08085 (
2024
).
You do not currently have access to this content.