We investigate the orientational properties of a homogeneous and inhomogeneous tetrahedral four-patch fluid (Bol–Kern–Frenkel model). Using integral equations, either (i) HNC or (ii) a modified HNC scheme with a simulation input, the full orientational dependence of pair and direct correlation functions is determined. Density functionals for the inhomogeneous problem are constructed via two different methods. The first, molecular density functional theory, utilizes the full direct correlation function and an isotropic hard-sphere bridge functional. The second method, a machine learning approach, uses a decomposition of the functional into an isotropic reference part and a mean-field orientational part, where both parts are improved by machine learning techniques. A comparison with the simulation data at hard walls and around hard tracers shows a similar performance of the two functionals. Machine learning strategies are discussed to eliminate residual differences, with the goal of obtaining machine-learning enhanced functionals for the general anisotropic fluid.

1.
J.
Russo
,
F.
Leoni
,
F.
Martelli
, and
F.
Sciortino
, “
The physics of empty liquids: From patchy particles to water
,”
Rep. Prog. Phys.
85
,
016601
(
2022
).
2.
F.
Roosen-Runge
,
F.
Zhang
,
F.
Schreiber
, and
R.
Roth
, “
Ion-activated attractive patches as a mechanism for controlled protein interactions
,”
Sci. Rep.
4
,
7016
(
2014
).
3.
M. R.
Fries
,
D.
Stopper
,
M. K.
Braun
,
A.
Hinderhofer
,
F.
Zhang
,
R. M. J.
Jacobs
,
M. W. A.
Skoda
,
H.
Hansen-Goos
,
R.
Roth
, and
F.
Schreiber
, “
Multivalent-ion-activated protein adsorption reflecting bulk reentrant behavior
,”
Phys. Rev. Lett.
119
,
228001
(
2017
).
4.
M. R.
Fries
,
D.
Stopper
,
M. W. A.
Skoda
,
M.
Blum
,
C.
Kertzscher
,
A.
Hinderhofer
,
F.
Zhang
,
R. M. J.
Jacobs
,
R.
Roth
, and
F.
Schreiber
, “
Enhanced protein adsorption upon bulk phase separation
,”
Sci. Rep.
10
,
10349
(
2020
).
5.
M.
Wertheim
, “
Thermodynamic perturbation theory of polymerization
,”
J. Chem. Phys.
87
,
7323
(
1987
).
6.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
7.
E.
Bianchi
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements
,”
J. Chem. Phys.
128
,
144504
(
2008
).
8.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
, “
Phase diagram of a tetrahedral patchy particle model for different interaction ranges
,”
J. Chem. Phys.
132
,
184501
(
2010
).
9.
S.
Roldan-Vargas
,
L.
Rovigatti
, and
F.
Sciortino
, “
Connectivity, dynamics, and structure in a tetrahedral network liquid
,”
Soft Matter
13
,
514
(
2017
).
10.
D.
Stopper
,
F.
Hirschmann
,
M.
Oettel
, and
R.
Roth
, “
Bulk structural information from density functionals for patchy particles
,”
J. Chem. Phys.
149
,
224503
(
2018
).
11.
C. G.
Gray
,
K. E.
Gubbins
, and
C. G.
Joslin
,
Theory of Molecular Fluids: Volume 1: Fundamentals
(
Oxford University Press
,
1984
), Vol.
10
.
12.
L.
Blum
and
A.
Torruella
, “
Invariant expansion for two-body correlations: Thermodynamic functions, scattering, and the Ornstein–Zernike equation
,”
J. Chem. Phys.
56
,
303
310
(
1972
).
13.
J.
Richardi
,
C.
Millot
, and
P. H.
Fries
, “
A molecular Ornstein–Zernike study of popular models for water and methanol
,”
J. Chem. Phys.
110
,
1138
1147
(
1999
).
14.
M.
Lombardero
,
C.
Martín
,
S.
Jorge
,
F.
Lado
, and
E.
Lomba
, “
An integral equation study of a simple point charge model of water
,”
J. Chem. Phys.
110
,
1148
1153
(
1999
).
15.
Y. V.
Kalyuzhnyi
,
I.
Nezbedaband
, and
P. T.
Cummings
, “
Integral equation theory for a mixture of spherical and patchy colloids: Analytical description
,”
Soft Matter
16
,
3456
(
2020
).
16.
Y.-X.
Yu
and
J.
Wu
, “
A fundamental-measure theory for inhomogeneous associating fluids
,”
J. Chem. Phys.
116
,
7094
7103
(
2002
).
17.
A.
Simon
,
J.
Weimar
,
G.
Martius
, and
M.
Oettel
, “
Machine learning of a density functional for anisotropic patchy particles
,”
J. Chem. Theory Comput.
20
,
1062
1077
(
2024
).
18.
N.
Gnan
,
D.
de las Heras
,
J. M.
Tavares
,
M. M. T.
da Gama
, and
F.
Sciortino
, “
Properties of patchy colloidal particles close to a surface: A Monte Carlo and density functional study
,”
J. Chem. Phys.
137
,
084704
(
2012
).
19.
P.
Teixeira
and
F.
Sciortino
, “
Patchy particles at a hard wall: Orientation-dependent bonding
,”
J. Chem. Phys.
151
,
174903
(
2019
).
20.
S.
Zhao
,
R.
Ramirez
,
R.
Vuilleumier
, and
D.
Borgis
, “
Molecular density functional theory of solvation: From polar solvents to water
,”
J. Chem. Phys.
134
,
194102
(
2011
).
21.
L.
Ding
,
M.
Levesque
,
D.
Borgis
, and
L.
Belloni
, “
Efficient molecular density functional theory using generalized spherical harmonics expansions
,”
J. Chem. Phys.
147
,
094107
(
2017
).
22.
D.
Borgis
,
S.
Luukkonen
,
L.
Belloni
, and
G.
Jeanmairet
, “
Simple parameter-free bridge functionals for molecular density functional theory. Application to hydrophobic solvation
,”
J. Phys. Chem. B
124
,
6885
6893
(
2020
).
23.
D.
Borgis
,
S.
Luukkonen
,
L.
Belloni
, and
G.
Jeanmairet
, “
Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional
,”
J. Chem. Phys.
155
,
024117
(
2021
).
24.
L.
Belloni
, “
Exact molecular direct, cavity, and bridge functions in water system
,”
J. Chem. Phys.
147
,
164121
(
2017
).
25.
W.
Bol
, “
Monte Carlo simulations of fluid systems of waterlike molecules
,”
Mol. Phys.
45
,
605
616
(
1982
).
26.
N.
Kern
and
D.
Frenkel
, “
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
,”
J. Chem. Phys.
118
,
9882
9889
(
2003
).
27.
G.
Foffi
and
F.
Sciortino
, “
On the possibility of extending the Noro–Frenkel generalized law of correspondent states to nonisotropic patchy interactions
,”
J. Phys. Chem. B
111
,
9702
9705
(
2007
).
28.
L.
Rovigatti
,
J.
Russo
, and
F.
Romano
, “
How to simulate patchy particles
,”
Eur. Phys. J. E
41
,
59
(
2018
).
29.
I.
Pihlajamaa
and
L. M.
Janssen
, “
Comparison of integral equation theories of the liquid state
,”
Phys. Rev. E
110
,
044608
(
2024
).
30.
M.
Oettel
, “
Integral equations for simple fluids in a general reference functional approach
,”
J. Phys.: Condens. Matter
17
,
429
(
2005
).
31.
E.
Kierlik
and
M. L.
Rosinberg
, “
Free-energy density functional for the inhomogeneous hard-sphere fluid: Application to interfacial adsorption
,”
Phys. Rev. A
42
,
3382
3387
(
1990
).
32.
E.
Kierlik
and
M. L.
Rosinberg
, “
Density-functional theory for inhomogeneous fluids: Adsorption of binary mixtures
,”
Phys. Rev. A
44
,
5025
5037
(
1991
).
33.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
983
(
1989
).
34.
S.
Phan
,
E.
Kierlik
,
M. L.
Rosinberg
,
B.
Bildstein
, and
G.
Kahl
, “
Equivalence of two free-energy models for the inhomogeneous hard-sphere fluid
,”
Phys. Rev. E
48
,
618
620
(
1993
).
35.
S.-C.
Lin
and
M.
Oettel
, “
A classical density functional from machine learning and a convolutional neural network
,”
SciPost Phys.
6
,
025
(
2019
).
36.
S.-C.
Lin
,
G.
Martius
, and
M.
Oettel
, “
Analytical classical density functionals from an equation learning network
,”
J. Chem. Phys.
152
,
021102
(
2020
).
37.
P.
Cats
,
S.
Kuipers
,
S.
de Wind
,
R.
van Damme
,
G. M.
Coli
,
M.
Dijkstra
, and
R.
van Roij
, “
Machine-learning free-energy functionals using density profiles from simulations
,”
APL Mater.
9
,
031109
(
2021
).
38.
J. F.
Lutsko
, “
Direct correlation function from the consistent fundamental-measure free energies for hard-sphere mixtures
,”
Phys. Rev. E
87
,
014103
(
2013
).
39.
R.
Baxter
, “
Percus–Yevick equation for hard spheres with surface adhesion
,”
J. Chem. Phys.
49
,
2770
2774
(
1968
).
40.
A.
Barthes
,
T.
Bernet
,
D.
Grégoire
, and
C.
Miqueu
, “
A molecular density functional theory for associating fluids in 3D geometries
,”
J. Chem. Phys.
160
,
054704
(
2024
).
41.
S.
Tripathi
and
W. G.
Chapman
, “
Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures
,”
J. Chem. Phys.
122
,
094506
(
2005
).
42.
A.
Simon
and
M.
Oettel
, “
Machine learning approaches to classical density functional theory
,” arXiv:2406.07345 (
2024
).
43.
F.
Sammüller
,
S.
Hermann
,
D.
de las Heras
, and
M.
Schmidt
, “
Neural functional theory for inhomogeneous fluids: Fundamentals and applications
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2312484120
(
2023
).
44.
F.
Sammüller
,
S.
Hermann
, and
M.
Schmidt
, “
Why neural functionals suit statistical mechanics
,”
J. Phys.: Condens. Matter
36
,
243002
(
2024
).
45.
J.
Dijkman
,
M.
Dijkstra
,
R.
van Roij
,
M.
Welling
,
J.-W.
van de Meent
, and
B.
Ensing
, “
Learning neural free-energy functionals with pair-correlation matching
,” arXiv:2403.15007 (
2024
).
46.
F.
Sammüller
and
M.
Schmidt
, “
Neural density functionals: Local learning and pair-correlation matching
,”
Phys. Rev. E
110
,
L032601
(
2024
).
47.
F.
Sammüller
,
M.
Schmidt
, and
R.
Evans
, “
Neural density functional theory of liquid-gas phase coexistence
,” arXiv:2408.15835 (
2024
).
48.
D.
Borgis
,
L.
Gendre
, and
R.
Ramirez
, “
Molecular density functional theory: Application to solvation and electron-transfer thermodynamics in polar solvents
,”
J. Phys. Chem. B
116
,
2504
2512
(
2012
).
You do not currently have access to this content.