Methods based on density-functional theory usually treat open-shell atoms and molecules within the spin-unrestricted Kohn–Sham (KS) formalism, which breaks symmetries in real and spin space. Symmetry breaking is possible because the KS Hamiltonian operator does not need to exhibit the full symmetry of the physical Hamiltonian operator, but only the symmetry of the spin density, which is generally lower. Symmetry breaking leads to spin contamination and prevents a proper classification of the KS wave function with respect to the symmetries of the physical electron system. Formally well-justified variants of the KS formalism that restore symmetries in real space, in spin space, or in both have been introduced long ago, but have rarely been used in practice. Here, we introduce numerically stable KS inversion methods to construct reference KS potentials from reference spin-densities for all four possibilities to treat open shell systems, non-symmetrized, spin-symmetrized, space-symmetrized, and fully-symmetrized. The reference spin-densities are obtained by full configuration interaction and high-level coupled cluster methods for the considered atoms and diatomic molecules. The decomposition of the total energy in contributions such as the non-interacting kinetic, the exchange, and the correlation energy is different in the four KS formalisms. Reference values for these differences are provided for the considered atoms and molecules. All KS inversions, except the fully symmetrized one, lead in some cases to solutions violating the Aufbau principle. In the purely spin-symmetrized KS formalism, this represents a violation of the KS v-representability condition, i.e., no proper KS wave functions exist in those cases.

1.
B. I.
Dunlap
, “
Symmetry and degeneracy in Xα and density functional theory
,”
Adv. Chem. Phys.
69
,
287
318
(
1987
).
2.
B. I.
Dunlap
, “
Symmetry and spin density functional theory
,”
Chem. Phys.
125
,
89
97
(
1988
).
3.
A.
Görling
, “
Symmetry in density-functional theory
,”
Phys. Rev. A
47
,
2783
2799
(
1993
).
4.
R.
McWeeny
, “
Density functions and density functionals
,”
Philos. Mag. B
69
,
727
735
(
1994
).
5.
J. P.
Perdew
,
A.
Savin
, and
K.
Burke
, “
Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory
,”
Phys. Rev. A
51
,
4531
4541
(
1995
).
6.
B.
Weiner
and
S. B.
Trickey
, “
Fukutome symmetry classification of the Kohn–Sham auxiliary one-matrix and its associated state or ensemble
,”
Int. J. Quantum Chem.
69
,
451
460
(
1998
).
7.
J. A.
Pople
,
P. M. W.
Gill
, and
N. C.
Handy
, “
Spin-unrestricted character of Kohn-Sham orbitals for open-shell systems
,”
Int. J. Quantum Chem.
56
,
303
305
(
1995
).
8.
I. G.
Kaplan
, “
Problems in DFT with the total spin and degenerate states
,”
Int. J. Quantum Chem.
107
,
2595
2603
(
2007
).
9.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
10.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
11.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
12.
U.
von Barth
and
L.
Hedin
, “
A local exchange-correlation potential for the spin polarized case. I
,”
J. Phys. C: Solid State Phys.
5
,
1629
(
1972
).
13.
C. R.
Jacob
and
M.
Reiher
, “
Spin in density-functional theory
,”
Int. J. Quantum Chem.
112
,
3661
3684
(
2012
).
14.
H. A.
Fertig
and
W.
Kohn
, “
Symmetry of the atomic electron density in Hartree, Hartree-Fock, and density-functional theories
,”
Phys. Rev. A
62
,
052511
(
2000
).
15.
A. D.
Becke
, “
Current density in exchange-correlation functionals: Application to atomic states
,”
J. Chem. Phys.
117
,
6935
6938
(
2002
).
16.
S. T. u. R.
Chowdhury
and
J. P.
Perdew
, “
Spherical vs non-spherical and symmetry-preserving vs symmetry-breaking densities of open-shell atoms in density functional theory
,”
J. Chem. Phys.
155
,
234110
(
2021
).
17.
E.
Trushin
,
J.
Erhard
, and
A.
Görling
, “
Violations of the v-representability condition underlying Kohn-Sham density-functional theory
,”
Phys. Rev. A
110
,
L020802
(
2024
).
18.
Á.
Nagy
, “
Kohn-Sham equations for multiplets
,”
Phys. Rev. A
57
,
1672
1677
(
1998
).
19.
M.
Filatov
and
S.
Shaik
, “
Spin-restricted density functional approach to the open-shell problem
,”
Chem. Phys. Lett.
288
,
689
697
(
1998
).
20.
M.
Filatov
and
S.
Shaik
, “
Application of spin-restricted open-shell Kohn–Sham method to atomic and molecular multiplet states
,”
J. Chem. Phys.
110
,
116
125
(
1999
).
21.
M.
Filatov
, “
Spin-restricted ensemble-referenced Kohn–Sham method: Basic principles and application to strongly correlated ground and excited states of molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
146
167
(
2015
).
22.
A.
Görling
, “
Proper treatment of symmetries and excited states in a computationally tractable Kohn-Sham method
,”
Phys. Rev. Lett.
85
,
4229
4232
(
2000
).
23.
F.
Della Sala
and
A.
Görling
, “
Open-shell localized Hartree–Fock approach for an efficient effective exact-exchange Kohn–Sham treatment of open-shell atoms and molecules
,”
J. Chem. Phys.
118
,
10439
10454
(
2003
).
24.
V.
Vitale
,
F.
Della Sala
, and
A.
Görling
, “
Open-shell localized Hartree–Fock method based on the generalized adiabatic connection Kohn–Sham formalism for a self-consistent treatment of excited states
,”
J. Chem. Phys.
122
,
244102
(
2005
).
25.
E.
Trushin
and
A.
Görling
, “
Avoiding spin contamination and spatial symmetry breaking by exact-exchange-only optimized-effective-potential methods within the symmetrized Kohn–Sham framework
,”
J. Chem. Phys.
159
,
244109
(
2023
).
26.
Y.
Shi
and
A.
Wasserman
, “
Inverse Kohn–Sham density functional theory: Progress and challenges
,”
J. Phys. Chem. Lett.
12
,
5308
5318
(
2021
).
27.
F.
Aryasetiawan
and
M. J.
Stott
, “
Effective potentials in density-functional theory
,”
Phys. Rev. B
38
,
2974
2987
(
1988
).
28.
A.
Görling
, “
Kohn-Sham potentials and wave functions from electron densities
,”
Phys. Rev. A
46
,
3753
3757
(
1992
).
29.
Q.
Zhao
and
R. G.
Parr
, “
Constrained-search method to determine electronic wave functions from electronic densities
,”
J. Chem. Phys.
98
,
543
548
(
1993
).
30.
Y.
Wang
and
R. G.
Parr
, “
Construction of exact Kohn-Sham orbitals from a given electron density
,”
Phys. Rev. A
47
,
R1591
R1593
(
1993
).
31.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
, “
From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies
,”
Phys. Rev. A
50
,
2138
2142
(
1994
).
32.
R.
van Leeuwen
and
E. J.
Baerends
, “
Exchange-correlation potential with correct asymptotic behavior
,”
Phys. Rev. A
49
,
2421
2431
(
1994
).
33.
A.
Görling
and
M.
Ernzerhof
, “
Energy differences between Kohn-Sham and Hartree-Fock wave functions yielding the same electron density
,”
Phys. Rev. A
51
,
4501
(
1995
).
34.
K.
Peirs
,
D.
Van Neck
, and
M.
Waroquier
, “
Algorithm to derive exact exchange-correlation potentials from correlated densities in atoms
,”
Phys. Rev. A
67
,
012505
(
2003
).
35.
Q.
Wu
and
W.
Yang
, “
A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities
,”
J. Chem. Phys.
118
,
2498
2509
(
2003
).
36.
E. S.
Kadantsev
and
M. J.
Stott
, “
Variational method for inverting the Kohn-Sham procedure
,”
Phys. Rev. A
69
,
012502
(
2004
).
37.
F. A.
Bulat
,
T.
Heaton-Burgess
,
A. J.
Cohen
, and
W.
Yang
, “
Optimized effective potentials from electron densities in finite basis sets
,”
J. Chem. Phys.
127
,
174101
(
2007
).
38.
C. R.
Jacob
, “
Unambiguous optimization of effective potentials in finite basis sets
,”
J. Chem. Phys.
135
,
244102
(
2011
).
39.
K.
Boguslawski
,
C. R.
Jacob
, and
M.
Reiher
, “
Optimized unrestricted Kohn–Sham potentials from ab initio spin densities
,”
J. Chem. Phys.
138
,
044111
(
2013
).
40.
X.
Zhang
and
E. A.
Carter
, “
Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets
,”
J. Chem. Phys.
148
,
034105
(
2018
).
41.
Q.
Ou
and
E. A.
Carter
, “
Potential functional embedding theory with an improved Kohn–Sham inversion algorithm
,”
J. Chem. Theory Comput.
14
,
5680
5689
(
2018
).
42.
B.
Kanungo
,
P. M.
Zimmerman
, and
V.
Gavini
, “
Exact exchange-correlation potentials from ground-state electron densities
,”
Nat. Commun.
10
,
4497
(
2019
).
43.
T. J.
Callow
,
N. N.
Lathiotakis
, and
N. I.
Gidopoulos
, “
Density-inversion method for the Kohn–Sham potential: Role of the screening density
,”
J. Chem. Phys.
152
,
164114
(
2020
).
44.
J.
Erhard
,
E.
Trushin
, and
A.
Görling
, “
Numerically stable inversion approach to construct Kohn–Sham potentials for given electron densities within a Gaussian basis set framework
,”
J. Chem. Phys.
156
,
204124
(
2022
).
45.
T.
Gould
, “
Toward routine Kohn–Sham inversion using the ‘Lieb-response’ approach
,”
J. Chem. Phys.
158
,
064102
(
2023
).
46.
I. G.
Ryabinkin
,
S. V.
Kohut
, and
V. N.
Staroverov
, “
Reduction of electronic wave functions to Kohn-Sham effective potentials
,”
Phys. Rev. Lett.
115
,
083001
(
2015
).
47.
E.
Ospadov
,
I. G.
Ryabinkin
, and
V. N.
Staroverov
, “
Improved method for generating exchange-correlation potentials from electronic wave functions
,”
J. Chem. Phys.
146
,
084103
(
2017
).
48.
C. O.
Almbladh
and
A. C.
Pedroza
, “
Density-functional exchange-correlation potentials and orbital eigenvalues for light atoms
,”
Phys. Rev. A
29
,
2322
2330
(
1984
).
49.
J.
Chen
,
J. B.
Krieger
,
R. O.
Esquivel
,
M. J.
Stott
, and
G. J.
Iafrate
, “
Kohn-Sham effective potentials for spin-polarized atomic systems
,”
Phys. Rev. A
54
,
1910
1921
(
1996
).
50.
O. V.
Gritsenko
and
E. J.
Baerends
, “
The spin-unrestricted molecular Kohn–Sham solution and the analogue of Koopmans’s theorem for open-shell molecules
,”
J. Chem. Phys.
120
,
8364
8372
(
2004
).
51.
S.
Nam
,
R. J.
McCarty
,
H.
Park
, and
E.
Sim
, “
KS-pies: Kohn–Sham inversion toolkit
,”
J. Chem. Phys.
154
,
124122
(
2021
).
52.
B.
Kanungo
,
J.
Hatch
,
P. M.
Zimmerman
, and
V.
Gavini
, “
Exact and model exchange-correlation potentials for open-shell systems
,”
J. Phys. Chem. Lett.
14
,
10039
10045
(
2023
).
53.
E.
Trushin
and
A.
Görling
, “
Numerically stable optimized effective potential method with standard Gaussian basis sets
,”
J. Chem. Phys.
155
,
054109
(
2021
).
54.
R. T.
Sharp
and
G. K.
Horton
, “
A variational approach to the unipotential many-electron problem
,”
Phys. Rev.
90
,
317
(
1953
).
55.
J. D.
Talman
and
W. F.
Shadwick
, “
Optimized effective atomic central potential
,”
Phys. Rev. A
14
,
36
40
(
1976
).
56.
V.
Sahni
,
J.
Gruenebaum
, and
J. P.
Perdew
, “
Study of the density-gradient expansion for the exchange energy
,”
Phys. Rev. B
26
,
4371
4377
(
1982
).
57.
A.
Görling
, “
Exact treatment of exchange in Kohn-Sham band-structure schemes
,”
Phys. Rev. B
53
,
7024
(
1996
);
58.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
, “
Exact Kohn-Sham exchange potential in semiconductors
,”
Phys. Rev. Lett.
79
,
2089
(
1997
).
59.
A.
Görling
, “
New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential
,”
Phys. Rev. Lett.
83
,
5459
5462
(
1999
).
60.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
, “
Exact exchange treatment for molecules in finite-basis-set Kohn-Sham theory
,”
Phys. Rev. Lett.
83
,
5455
5458
(
1999
).
61.
A.
Görling
, “
Orbital- and state-dependent functionals in density-functional theory
,”
J. Chem. Phys.
123
,
062203
(
2005
).
62.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
60
(
2008
).
63.
K.
Capelle
and
G.
Vignale
, “
Nonuniqueness of the potentials of spin-density-functional theory
,”
Phys. Rev. Lett.
86
,
5546
5549
(
2001
).
64.
H.
Eschrig
and
W. E.
Pickett
, “
Density functional theory of magnetic systems revisited
,”
Solid State Commun.
118
,
123
127
(
2001
).
65.
M.
Levy
, “
Electron densities in search of Hamiltonians
,”
Phys. Rev. A
26
,
1200
1208
(
1982
).
66.
E. H.
Lieb
, “
Density functionals for Coulomb systems
,”
Int. J. Quantum Chem.
24
,
243
277
(
1983
).
67.
P. G.
Szalay
and
R. J.
Bartlett
, “
Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis
,”
J. Chem. Phys.
103
,
3600
3612
(
1995
).
68.
A.
Goursot
,
J.
Malrieu
, and
D.
Salahub
, “
Bonding in C2 and Be2: Broken symmetry and correlation in DFT solutions
,”
Theor. Chim. Acta
91
,
225
236
(
1995
).
69.
C.
Sherrill
,
M. S.
Lee
, and
M.
Head-Gordon
, “
On the performance of density functional theory for symmetry-breaking problems
,”
Chem. Phys. Lett.
302
,
425
430
(
1999
).
70.
Y.
Gu
and
X.
Xu
, “
Symmetry dilemma of doubly hybrid density functionals for equilibrium molecular property calculations
,”
J. Chem. Theory Comput.
17
,
7745
7752
(
2021
).
71.
C. C. J.
Roothaan
, “
Self-consistent field theory for open shells of electronic systems
,”
Rev. Mod. Phys.
32
,
179
185
(
1960
).
72.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
, “
Exact differential equation for the density and ionization energy of a many-particle system
,”
Phys. Rev. A
30
,
2745
2748
(
1984
).
73.
C.-O.
Almbladh
and
U.
von Barth
, “
Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues
,”
Phys. Rev. B
31
,
3231
3244
(
1985
).
74.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
75.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
III
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
76.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
77.
A.
Karton
,
S.
Daon
, and
J. M.
Martin
, “
W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
,”
Chem. Phys. Lett.
510
,
165
178
(
2011
).
78.
E.
Trushin
,
S.
Fauser
,
A.
Mölkner
,
J.
Erhard
, and
A.
Görling
, “
Accurate correlation potentials from the self-consistent random phase approximation
,”
Phys. Rev. Lett.
134
,
016402
(
2025
).
79.
M.
Levy
, “
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem
,”
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
6065
(
1979
).
80.
A.
Heßelmann
and
A.
Görling
, “
Random-phase approximation correlation methods for molecules and solids
,”
Mol. Phys.
109
,
2473
2500
(
2011
).
81.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
, “
Electron correlation methods based on the random phase approximation
,”
Theor. Chem. Acc.
131
,
1084
(
2012
).
82.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
, “
Random-phase approximation and its applications in computational chemistry and materials science
,”
J. Mater. Sci.
47
,
7447
7471
(
2012
).
83.
E.
Trushin
,
A.
Thierbach
, and
A.
Görling
, “
Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy
,”
J. Chem. Phys.
154
,
014104
(
2021
).
84.
S.
Fauser
,
E.
Trushin
,
C.
Neiss
, and
A.
Görling
, “
Chemical accuracy with σ-functionals for the Kohn–Sham correlation energy optimized for different input orbitals and eigenvalues
,”
J. Chem. Phys.
155
,
134111
(
2021
).
You do not currently have access to this content.