The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J. Phys. Chem. Lett. 14, 5924 (2023)], we extend the theory of the QED-NAE rate from a single cavity photonic mode to infinite photonic modes and calculate the QED-NAE rates of 9-cyanoanthracene at the first-principles level. To avoid the confusion, the quantum electrodynamic internal conversion process is renamed as “QED-NAE” in our present work. According to our theory, we identify three key factors influencing the QED-NAE processes: light–matter coupling strength (mode volume), mass-weighted orientation factor, and photonic density of states. The mode volume is the primary factor causing rate differences between the two scenarios. In a single cavity with a small mode volume, strong light–matter coupling strength boosts QED-NAE rates. In contrast, in free space with infinite photonic modes, weak coupling strength significantly reduces these rates. From a single cavity photonic mode to infinite photonic modes, the mass-weighted orientation factor only causes an 8π/3-fold increase in the QED-NAE rate. In free space, the photonic density of state exhibits a flat and quadratic distribution, which slightly reduces the QED-NAE rate. Our study shows that cavities can significantly enhance non-adiabatic QED effects while providing a robust analysis demonstrating that QED vibronic effects can be safely ignored in free space.

1.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
2.
S. H.
Lin
,
J. Chem. Phys.
44
,
3759
(
1966
).
3.
G.
Li
,
V.
Shrotriya
,
J.
Huang
,
Y.
Yao
,
T.
Moriarty
,
K.
Emery
, and
Y.
Yang
,
Nat. Mater.
4
,
864
(
2005
).
5.
B.
Thompson
and
J.
Fréchet
,
Angew. Chem., Int. Ed.
47
,
58
(
2008
).
6.
Q.
Zhang
,
H.
Kuwabara
,
W. J.
Potscavage
,
S.
Huang
,
Y.
Hatae
,
T.
Shibata
, and
C.
Adachi
,
J. Am. Chem. Soc.
136
,
18070
(
2014
).
7.
K.
Shizu
,
M.
Uejima
,
H.
Nomura
,
T.
Sato
,
K.
Tanaka
,
H.
Kaji
, and
C.
Adachi
,
Phys. Rev. Appl.
3
,
014001
(
2015
).
8.
Y.-C.
Wei
,
S. F.
Wang
,
Y.
Hu
,
L.-S.
Liao
,
D.-G.
Chen
,
K.-H.
Chang
,
C.-W.
Wang
,
S.-H.
Liu
,
W.-H.
Chan
,
J.-L.
Liao
,
W.-Y.
Hung
,
T.-H.
Wang
,
P.-T.
Chen
,
H.-F.
Hsu
,
Y.
Chi
, and
P.-T.
Chou
,
Nat. Photonics
14
,
570
(
2020
).
9.
S.-F.
Wang
,
B.-K.
Su
,
X.-Q.
Wang
,
Y.-C.
Wei
,
K.-H.
Kuo
,
C.-H.
Wang
,
S.-H.
Liu
,
L.-S.
Liao
,
W.-Y.
Hung
,
L.-W.
Fu
,
W.-T.
Chuang
,
M.
Qin
,
X.
Lu
,
C.
You
,
Y.
Chi
, and
P.-T.
Chou
,
Nat. Photonics
16
,
843
(
2022
).
10.
H.-S.
Kim
,
C.-R.
Lee
,
J.-H.
Im
,
K.-B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S.-J.
Moon
,
R.
Humphry-Baker
,
J.-H.
Yum
,
J. E.
Moser
,
M.
Grätzel
, and
N.-G.
Park
,
Sci. Rep.
2
,
591
(
2012
).
11.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Grätzel
,
Energy Environ. Sci.
9
,
1989
(
2016
).
12.
W.
Nie
,
H.
Tsai
,
R.
Asadpour
,
J.-C.
Blancon
,
A. J.
Neukirch
,
G.
Gupta
,
J. J.
Crochet
,
M.
Chhowalla
,
S.
Tretiak
,
M. A.
Alam
,
H.-L.
Wang
, and
A. D.
Mohite
,
Science
347
,
522
(
2015
).
13.
A.
Haque
,
S.
Kee
,
D. R.
Villalva
,
W.-L.
Ong
, and
D.
Baran
,
Adv. Sci.
7
,
1903389
(
2020
).
14.
Y.
Chen
,
Y.
Sun
,
J.
Peng
,
J.
Tang
,
K.
Zheng
, and
Z.
Liang
,
Adv. Mater.
30
,
1703487
(
2018
).
15.
L. N.
Quan
,
F. P.
García de Arquer
,
R. P.
Sabatini
, and
E. H.
Sargent
,
Adv. Mater.
30
,
1801996
(
2018
).
16.
17.
S. H.
Lin
,
J. Chem. Phys.
53
,
3766
(
1970
).
18.
W.
Siebrand
,
J. Chem. Phys.
46
,
440
(
1967
).
19.
R.
Englman
and
J.
Jortner
,
Mol. Phys.
18
,
145
(
1970
).
20.
S. J.
Jang
,
J. Chem. Phys.
155
,
164106
(
2021
).
21.
G. D.
Gillispie
,
Chem. Phys. Lett.
63
,
193
(
1979
).
22.
A.
Maciejewski
,
A.
Safarzadeh-Amiri
,
R.
Verrall
, and
R.
Steer
,
Chem. Phys.
87
,
295
(
1984
).
23.
H. J.
Griesser
and
U. P.
Wild
,
Chem. Phys.
52
,
117
(
1980
).
24.
E. M.
Kober
,
J. V.
Caspar
,
R. S.
Lumpkin
, and
T. J.
Meyer
,
J. Phys. Chem.
90
,
3722
(
1986
).
25.
M.
Bixon
,
J.
Jortner
,
J.
Cortes
,
H.
Heitele
, and
M. E.
Michel-Beyerle
,
J. Phys. Chem.
98
,
7289
(
1994
).
26.
B. T.
Lim
,
S.
Okajima
,
A. K.
Chandra
, and
E. C.
Lim
,
J. Chem. Phys.
77
,
3902
(
1982
).
27.
C.
Dosche
,
M. U.
Kumke
,
H.-G.
Löhmannsröben
,
F.
Ariese
,
A. N.
Bader
,
C.
Gooijer
,
O. Š.
Miljanić
,
M.
Iwamoto
,
K. P. C.
Vollhardt
,
R.
Puchta
, and
N. J. R.
van Eikema Hommes
,
Phys. Chem. Chem. Phys.
6
,
5476
(
2004
).
28.
G.-C.
Liu
,
T.-H.
Huang
,
H.-W.
Wang
,
C.-H.
Hsu
,
P.-T.
Chou
,
W.-Y.
Hung
, and
K.-T.
Wong
,
Chem. - Eur. J.
29
,
e202203660
(
2023
).
29.
H.-S.
Tsai
,
C.-E.
Shen
,
S.-C.
Hsu
, and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
14
,
5924
(
2023
).
30.
Y. R.
Poh
,
S.
Pannir-Sivajothi
, and
J.
Yuen-Zhou
,
J. Phys. Chem. C
127
,
5491
(
2023
).
31.
Q.
Ou
,
Y.
Shao
, and
Z.
Shuai
,
J. Am. Chem. Soc.
143
,
17786
(
2021
).
32.
T. E.
Li
,
Z.
Tao
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
18
,
2774
(
2022
).
33.
F.
Pavošević
,
S.
Hammes-Schiffer
,
A.
Rubio
, and
J.
Flick
,
J. Am. Chem. Soc.
144
,
4995
(
2022
).
34.
G.
Engelhardt
and
J.
Cao
,
Phys. Rev. B
105
,
064205
(
2022
).
35.
G.
Engelhardt
and
J.
Cao
,
Phys. Rev. Lett.
130
,
213602
(
2023
).
36.
Z.
Zhou
,
H.-T.
Chen
,
J. E.
Subotnik
, and
A.
Nitzan
,
Phys. Rev. A
108
,
023708
(
2023
).
37.
Z.
Zhou
,
H.-T.
Chen
,
M.
Sukharev
,
J. E.
Subotnik
, and
A.
Nitzan
,
J. Chem. Phys.
160
,
094107
(
2024
).
38.
39.
T. E.
Li
and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
145
,
377
(
2023
).
40.
Y.-C.
Wei
and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
13
,
9695
(
2022
).
41.
C.
Schäfer
,
M.
Ruggenthaler
, and
A.
Rubio
,
Phys. Rev. A
98
,
043801
(
2018
).
42.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
(
2017
).
43.
M.
Ruggenthaler
,
D.
Sidler
, and
A.
Rubio
,
Chem. Rev.
123
,
11191
(
2023
).
44.
D. P.
Craig
and
T.
Thirunamachandran
,
Molecular Quantum Electrodynamics
(
Courier Corporation
,
2012
).
45.
A.
Salam
,
Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions
(
Wiley
,
2010
).
46.
M. K.
Svendsen
,
M.
Ruggenthaler
,
H.
Hübener
,
C.
Schäfer
,
M.
Eckstein
,
A.
Rubio
, and
S.
Latini
, “
Theory of quantum light–matter interaction in cavities: Extended systems and the long wavelength approximation
,” arXiv:2312.17374 [cond-mat.mes-hall] (
2023
).
47.
F. P.
Bonafé
,
E. I.
Albar
,
S. T.
Ohlmann
,
V. P.
Kosheleva
,
C. M.
Bustamante
,
F.
Troisi
,
A.
Rubio
, and
H.
Appel
, “
Full minimal coupling maxwell-tddft: An ab initio framework for light-matter phenomena beyond the dipole approximation
,” arXiv:2409.08959 [cond-mat.mes-hall] (
2024
).
48.
S. V. B.
Jensen
,
M. M.
Lund
, and
L. B.
Madsen
,
Phys. Rev. A
101
,
043408
(
2020
).
49.
N. H.
List
,
J.
Kauczor
,
T.
Saue
,
H. J. A.
Jensen
, and
P.
Norman
,
J. Chem. Phys.
142
,
244111
(
2015
).
50.
E.
Aurbakken
,
B. S.
Ofstad
,
H. E.
Kristiansen
,
O. S.
Schøyen
,
S.
Kvaal
,
L. K.
Sørensen
,
R.
Lindh
, and
T. B.
Pedersen
,
Phys. Rev. A
109
,
013109
(
2024
).
51.
N. O.
Foglia
,
D.
Maganas
, and
F.
Neese
,
J. Chem. Phys.
157
,
084120
(
2022
).
52.
N. H.
List
,
T. R. L.
Melin
,
M.
van Horn
, and
T.
Saue
,
J. Chem. Phys.
152
,
184110
(
2020
).
53.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
,
J. Chem. Phys.
126
,
114302
(
2007
).
54.
S.
Wang
,
G. D.
Scholes
, and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
11
,
5948
(
2020
).
55.
S.
Wang
,
Y.-T.
Chuang
, and
L.-Y.
Hsu
,
J. Chem. Phys.
157
,
184107
(
2022
).
56.
S. K.
Sharma
and
H.-T.
Chen
,
J. Chem. Phys.
161
,
104102
(
2024
).
57.
A.
Semenov
and
A.
Nitzan
,
J. Chem. Phys.
150
,
174122
(
2019
).
58.
F.
Iachello
and
M.
Ibrahim
,
J. Phys. Chem. A
102
,
9427
(
1998
).
60.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
,
2008
).
61.
J. T.
Hugall
,
A.
Singh
, and
N. F.
van Hulst
,
ACS Photonics
5
,
43
(
2018
).
62.
Y.-C.
Wei
,
M.-W.
Lee
,
P.-T.
Chou
,
G. D.
Scholes
,
G. C.
Schatz
, and
L.-Y.
Hsu
,
J. Phys. Chem. C
125
,
18119
(
2021
).
63.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
51
,
1592
(
2012
).
64.
X.
Zhong
,
T.
Chervy
,
S.
Wang
,
J.
George
,
A.
Thomas
,
J. A.
Hutchison
,
E.
Devaux
,
C.
Genet
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
55
,
6202
(
2016
).
65.
H.
Bahsoun
,
T.
Chervy
,
A.
Thomas
,
K.
Börjesson
,
M.
Hertzog
,
J.
George
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
,
ACS Photonics
5
,
225
(
2017
).
66.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
67.
F.
Verdelli
,
Y.-C.
Wei
,
K.
Joseph
,
M. S.
Abdelkhalik
,
M.
Goudarzi
,
S. H. C.
Askes
,
A.
Baldi
,
E. W.
Meijer
, and
J.
Gomez Rivas
,
Angew. Chem., Int. Ed.
63
,
e202409528
(
2024
).
68.
T.
Gruner
and
D.-G.
Welsch
,
Phys. Rev. A
53
,
1818
(
1996
).
69.
H. T.
Dung
,
L.
Knöll
, and
D.-G.
Welsch
,
Phys. Rev. A
57
,
3931
(
1998
).
70.
S. Y.
Buhmann
,
Dispersion Forces I
(
Springer
,
2012
).
71.
S.
Wang
,
G. D.
Scholes
, and
L.-Y.
Hsu
,
J. Chem. Phys.
151
,
014105
(
2019
).
72.
M. K.
Svendsen
,
K. S.
Thygesen
,
A.
Rubio
, and
J.
Flick
,
J. Chem. Theory Comput.
20
,
926
(
2024
).
73.
M. K.
Svendsen
,
Y.
Kurman
,
P.
Schmidt
,
F.
Koppens
,
I.
Kaminer
, and
K. S.
Thygesen
,
Nat. Commun.
12
,
2778
(
2021
).
74.
H.-S.
Tsai
,
C.-E.
Shen
, and
L.-Y.
Hsu
,
J. Chem. Phys.
160
,
144112
(
2024
).
75.
M.
Sánchez-Barquilla
,
F. J.
García-Vidal
,
A. I.
Fernández-Domínguez
, and
J.
Feist
,
Nanophotonics
11
,
4363
(
2022
).
76.
I.
Medina
,
F. J.
García-Vidal
,
A. I.
Fernández-Domínguez
, and
J.
Feist
,
Phys. Rev. Lett.
126
,
093601
(
2021
).
77.
J.
Feist
,
A. I.
Fernández-Domínguez
, and
F. J.
García-Vidal
,
Nanophotonics
10
,
477
(
2020
).
78.
M.-W.
Lee
,
Y.-T.
Chuang
, and
L.-Y.
Hsu
,
J. Chem. Phys.
155
,
074101
(
2021
).
79.
M.-W.
Lee
and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
11
,
6796
(
2020
).
80.
M.-W.
Lee
and
L.-Y.
Hsu
,
Phys. Rev. A
107
,
053709
(
2023
).
81.
Y.-C.
Wei
and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
15
,
7403
(
2024
).
82.
S.
Wang
and
L.-Y.
Hsu
,
J. Phys. Chem. C
127
,
12904
(
2023
).
83.
S.
Wang
,
Y.-T.
Chuang
, and
L.-Y.
Hsu
,
J. Chem. Phys.
155
,
134117
(
2021
).
84.
Y.-T.
Chuang
,
M.-W.
Lee
, and
L.-Y.
Hsu
,
Front. Phys.
10
,
980167
(
2022
).
85.
Y.-C.
Wei
and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
14
,
2395
(
2023
).
86.
Y.-T.
Chuang
and
L.-Y.
Hsu
,
J. Chem. Phys.
160
,
114105
(
2024
).
87.
S.
Wang
,
Y.-T.
Chuang
, and
L.-Y.
Hsu
,
J. Chem. Phys.
157
,
234109
(
2022
).
You do not currently have access to this content.