Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers’ persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein–protein, protein–water, and water–water in molecular dynamics simulations, as well as potential solutions to overcome these issues.

1.
P. K.
Weiner
and
P. A.
Kollman
, “
AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions
,”
J. Comput. Chem.
2
,
287
(
1981
).
2.
P.
Kollman
et al, “
Molecular-mechanical studies of Z-DNA: A comparison of the structural and energetic properties of Z- and B-DNA
,”
Biopolymers
21
,
1945
(
1982
).
3.
J. W.
Keepers
et al, “
Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings
,”
Proc. Natl. Acad. Sci. U. S. A.
79
,
5537
(
1982
).
4.
J. M.
Blaney
et al, “
Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogs to prealbumin
,”
J. Am. Chem. Soc.
104
,
6424
(
1982
).
5.
G.
Wipff
et al, “
Molecular mechanics studies of enzyme-substrate interactions: The interaction of L- and D-N-acetyltryptophanamide with α-chymotrypsin
,”
J. Am. Chem. Soc.
105
,
997
(
1983
).
6.
U. C.
Singh
and
P. A.
Kollman
, “
An approach to computing electrostatic charges for molecules
,”
J. Comput. Chem.
5
,
129
(
1984
).
7.
S.
Weiner
et al, “
A new force field for molecular mechanical simulation of nucleic acids and proteins
,”
J. Am. Chem. Soc.
106
,
765
(
1984
).
8.
U.
Singh
,
S. J.
Weiner
, and
P.
Kollman
, “
Molecular dynamics simulations of d(C-G-C-G-A) X d(T-C-G-C-G) with and without ‘hydrated’ counterions
,”
Proc. Natl. Acad. Sci. U. S. A.
82
,
755
(
1985
).
9.
S. J.
Weiner
et al, “
An all atom force field for simulations of proteins and nucleic acids
,”
J. Comput. Chem.
7
,
230
(
1986
).
10.
P. A.
Bash
et al, “
Calculation of the relative change in binding free energy of a protein-inhibitor complex
,”
Science
235
,
574
(
1987
).
11.
U.
Singh
et al, “
An approach to the application of free energy perturbation methods using molecular dynamics: Applications to the transformations of CH3OH → CH3CH3, H3O+ → NH4+, glycine → alanine, and alanine → phenylalanine in aqueous solution and to H3O+(H2O)3 → NH4+(H2O)3 in the gas phase
,”
J. Am. Chem. Soc.
109
,
1607
(
1987
).
12.
P. A.
Bash
et al, “
Free energy calculations by computer simulation
,”
Science
236
,
564
(
1987
).
13.
A. E.
Howard
and
P. A.
Kollman
, “
An analysis of current methodologies for conformational searching of complex molecules
,”
J. Med. Chem.
31
,
1669
(
1988
).
14.
D. A.
Pearlman
and
P. A.
Kollman
, “
The lag between the Hamiltonian and the system configuration in free energy perturbation calculations
,”
J. Chem. Phys.
91
,
7831
(
1989
).
15.
K. M.
Merz
, Jr.
and
P. A.
Kollman
, “
Free energy perturbation simulations of the inhibition of thermolysin: Prediction of the free energy of binding of a new inhibitor
,”
J. Am. Chem. Soc.
111
,
5649
(
1989
).
16.
P. D.
Grootenhuis
and
P. A.
Kollman
, “
Crown ether-neutral molecule interactions studied by molecular mechanics, normal mode analysis, and free energy perturbation calculations. Near quantitative agreement between theory and experimental binding free energies
,”
J. Am. Chem. Soc.
111
,
4046
(
1989
).
17.
L.
Chiche
et al, “
Use of restrained molecular dynamics in water to determine three-dimensional protein structure: Prediction of the three-dimensional structure of Ecballium elaterium trypsin inhibitor II
,”
Proteins
6
,
405
(
1989
).
18.
D. A.
Pearlman
and
P. A.
Kollman
, “
A new method for carrying out free energy perturbation calculations: Dynamically modified windows
,”
J. Chem. Phys.
90
,
2460
(
1989
).
19.
V.
Hornak
et al, “
Comparison of multiple Amber force fields and development of improved protein backbone parameters
,”
Proteins
65
,
712
(
2006
).
20.
K.
Lindorff-Larsen
et al, “
Improved side-chain torsion potentials for the Amber ff99SB protein force field
,”
Proteins
78
,
1950
(
2010
).
21.
J. A.
Maier
et al, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
,
3696
(
2015
).
22.
P.
Robustelli
,
S.
Piana
, and
D. E.
Shaw
, “
Developing a molecular dynamics force field for both folded and disordered protein states
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E4758
(
2018
).
23.
C.
Tian
et al, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
,
528
(
2020
).
24.
C. I.
Bayly
et al, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
(
1993
).
25.
W. D.
Cornell
et al, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
(
1995
).
26.
J.
Wang
et al, “
Development and testing of a general Amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
27.
J.
Wang
et al, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
,
247
(
2006
).
28.
D.
Bashford
and
D. A.
Case
, “
Generalized Born models of macromolecular solvation effects
,”
Annu. Rev. Phys. Chem.
51
,
129
(
2000
).
29.
V.
Tsui
and
D. A.
Case
, “
Theory and applications of the generalized Born solvation model in macromolecular simulations
,”
Biopolymers
56
,
275
(
2000
).
30.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Modification of the generalized Born model suitable for macromolecules
,”
J. Phys. Chem. B
104
,
3712
(
2000
).
31.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Exploring protein native states and large-scale conformational changes with a modified generalized Born model
,”
Proteins
55
,
383
(
2004
).
32.
J.
Srinivasan
et al, “
Continuum solvent studies of the stability of RNA hairpin loops and helices
,”
J. Biomol. Struct. Dyn.
16
,
671
(
1998
).
33.
P. A.
Kollman
et al, “
Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models
,”
Acc. Chem. Res.
33
,
889
(
2000
).
34.
H.
Gohlke
and
D. A.
Case
, “
Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf
,”
J. Comput. Chem.
25
,
238
(
2004
).
35.
D. A.
Case
et al, “
The Amber biomolecular simulation programs
,”
J. Comput. Chem.
26
,
1668
(
2005
).
36.
R.
Salomon-Ferrer
,
D. A.
Case
, and
R. C.
Walker
, “
An overview of the Amber biomolecular simulation package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
198
(
2013
).
37.
A. W.
Gotz
et al, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born
,”
J. Chem. Theory Comput.
8
,
1542
(
2012
).
38.
R.
Salomon-Ferrer
et al, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
,”
J. Chem. Theory Comput.
9
,
3878
(
2013
).
39.
S.
Le Grand
,
A. W.
Götz
, and
R. C.
Walker
, “
SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations
,”
Comput. Phys. Commun.
184
,
374
(
2013
).
40.
D. R.
Roe
and
T. E.
Cheatham
III
, “
PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
,”
J. Chem. Theory Comput.
9
,
3084
(
2013
).
41.
P.
Eastman
et al, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
42.
P.
Eastman
et al, “
OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation
,”
J. Chem. Theory Comput.
9
,
461
(
2013
).
43.
Y.
Qiu
et al, “
Development and benchmarking of open force field v1.0.0—The Parsley small-molecule force field
,”
J. Chem. Theory Comput.
17
,
6262
(
2021
).
44.
S.
Boothroyd
et al, “
Development and benchmarking of open force field 2.0.0: The Sage small molecule force field
,”
J. Chem. Theory Comput.
19
,
3251
(
2023
).
45.
S. A.
Hollingsworth
and
R. O.
Dror
, “
Molecular dynamics simulation for all
,”
Neuron
99
,
1129
(
2018
).
46.
O. M.
Salo-Ahen
et al, “
Molecular dynamics simulations in drug discovery and pharmaceutical development
,”
Processes
9
,
71
(
2020
).
47.
D. E.
Shaw
et al, “
Anton 3: Twenty microseconds of molecular dynamics simulation before lunch
,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis SC’21
(
Association for Computing Machinery
:
New York, NY
,
2021
), p.
1
.
48.
R. O.
Dror
et al, “
Biomolecular simulation: A computational microscope for molecular biology
,”
Annu. Rev. Biophys.
41
,
429
(
2012
).
49.
S.
Yang
et al, “
Residue-specific force field improving the sample of intrinsically disordered proteins and folded proteins
,”
J. Chem. Inf. Model.
59
,
4793
(
2019
).
50.
A. M.
Salsbury
and
J. A.
Lemkul
, “
Recent developments in empirical atomistic force fields for nucleic acids and applications to studies of folding and dynamics
,”
Curr. Opin. Struct. Biol.
67
,
9
(
2021
).
51.
J.
Mu
et al, “
Recent force field strategies for intrinsically disordered proteins
,”
J. Chem. Inf. Model.
61
,
1037
(
2021
).
52.
D.
van der Spoel
, “
Systematic design of biomolecular force fields
,”
Curr. Opin. Struct. Biol.
67
,
18
(
2021
).
53.
W.
Wang
, “
Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins
,”
Phys. Chem. Chem. Phys.
23
,
777
(
2021
).
54.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
New developments in force fields for biomolecular simulations
,”
Curr. Opin. Struct. Biol.
49
,
129
(
2018
).
55.
A. V.
Onufriev
and
S.
Izadi
, “
Water models for biomolecular simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1347
(
2018
).
56.
A.
Sengupta
et al, “
Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models
,”
J. Chem. Inf. Model.
61
,
869
(
2021
).
57.
X.
Liu
et al, “
Molecular dynamics simulations and novel drug discovery
,”
Expert Opin. Drug Discovery
13
,
23
(
2018
).
58.
R.
Shukla
and
T.
Tripathi
, “
Molecular dynamics simulation in drug discovery: Opportunities and challenges
,” in
Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design
(
Springer
,
2021
), p.
295
.
59.
M.
De Vivo
et al, “
Role of molecular dynamics and related methods in drug discovery
,”
J. Med. Chem.
59
,
4035
(
2016
).
60.
Y.
Shan
et al, “
How does a drug molecule find its target binding site?
,”
J. Am. Chem. Soc.
133
,
9181
(
2011
).
61.
S.
Gupta
and
A. K.
Dasmahapatra
, “
Caffeine destabilizes preformed Aβ protofilaments: Insights from all atom molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
21
,
22067
(
2019
).
62.
Y.
Chen
et al, “
A comprehensive insight into the mechanisms of dopamine in disrupting Aβ protofibrils and inhibiting Aβ aggregation
,”
ACS Chem. Neurosci.
12
,
4007
(
2021
).
63.
Y.
Gong
et al, “
Serotonin and melatonin show different modes of action on Aβ42 protofibril destabilization
,”
ACS Chem. Neurosci.
12
,
799
(
2021
).
64.
D.
Bedrov
et al, “
Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields
,”
Chem. Rev.
119
,
7940
(
2019
).
65.
X.
Zhu
,
P. E.
Lopes
, and
A. D.
MacKerell
, Jr.
, “
Recent developments and applications of the CHARMM force fields
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
167
(
2012
).
66.
X.
He
et al, “
Recent progress in general force fields of small molecules
,”
Curr. Opin. Struct. Biol.
72
,
187
(
2022
).
67.
J. W.
Ponder
and
D. A.
Case
, “
Force fields for protein simulations
,”
Adv. Protein Chem.
66
,
27
(
2003
).
68.
J. A.
Lemkul
et al, “
An empirical polarizable force field based on the classical Drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
(
2016
).
69.
Z.
Jing
et al, “
Polarizable force fields for biomolecular simulations: Recent advances and applications
,”
Annu. Rev. Biophys.
48
,
371
(
2019
).
70.
J. W.
Ponder
et al, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
,
2549
(
2010
).
71.
J. A.
Lemkul
and
A. D.
MacKerell
, Jr.
, “
Polarizable force field for DNA based on the classical Drude oscillator: I. Refinement using quantum mechanical base stacking and conformational energetics
,”
J. Chem. Theory Comput.
13
,
2053
(
2017
).
72.
J.
Chen
and
T. J.
Martínez
, “
QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics
,”
Chem. Phys. Lett.
438
,
315
(
2007
).
73.
X.
Peng
et al, “
Accurate evaluation of ion conductivity of the gramicidin a channel using a polarizable force field without any corrections
,”
J. Chem. Theory Comput.
12
,
2973
(
2016
).
74.
C.
Ji
,
Y.
Mei
, and
J. Z.
Zhang
, “
Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin
,”
Biophys. J.
95
,
1080
(
2008
).
75.
K.
Lindorff-Larsen
et al, “
How fast-folding proteins fold
,”
Science
334
,
517
(
2011
).
76.
L. A.
Abriata
and
M.
Dal Peraro
, “
Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization
,”
Comput. Struct. Biotechnol. J.
19
,
2626
(
2021
).
77.
P.
Dauber-Osguthorpe
and
A. T.
Hagler
, “
Biomolecular force fields: Where have we been, where are we now, where do we need to go and how do we get there?
,”
J. Comput.-Aided Mol. Des.
33
,
133
(
2019
).
78.
D. A.
Case
et al, Amber 2021,
University of California
,
San Francisco
,
2021
.
79.
B. R.
Brooks
et al, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
(
2009
).
80.
W.
Kang
,
F.
Jiang
, and
Y. D.
Wu
, “
How to strike a conformational balance in protein force fields for molecular dynamics simulations?
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1578
(
2022
).
81.
C.
Wang
(
2021
). “
Force-Fields: Modified a99SB-disp for OpenMM
,” GitHub. https://github.com/CongWang98/Modified_a99SBdisp
82.
J.
Carvaill
(
2019
). “
Force-Fields: Amber-99SB-DISP
,” GitHub. https://github.com/jecarvaill/Amber-99SB-DISP
83.
P.
Robustelli
(
2024
). “
Force-fields: DES-Amber
,” GitHub. https://github.com/paulrobustelli/Force-Fields
84.
S.
Furini
and
C.
Domene
, “
Critical assessment of common force fields for molecular dynamics simulations of potassium channels
,”
J. Chem. Theory Comput.
16
,
7148
(
2020
).
85.
D.
Vassetti
,
M.
Pagliai
, and
P.
Procacci
, “
Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules
,”
J. Chem. Theory Comput.
15
,
1983
(
2019
).
86.
T. J.
Oweida
et al, “
Assessment of AMBER force fields for simulations of ssDNA
,”
J. Chem. Theory Comput.
17
,
1208
(
2021
).
87.
Z.
Hu
and
J.
Jiang
, “
Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal
,”
J. Comput. Chem.
31
,
371
(
2010
).
88.
L.
D’Amore
et al, “
Collaborative assessment of molecular geometries and energies from the Open Force Field
,”
J. Chem. Inf. Model.
62
,
6094
(
2022
).
89.
T.
Choi
et al, “
Comprehensive comparison and critical assessment of RNA-specific force fields
,”
J. Chem. Theory Comput.
20
,
2676
(
2024
).
90.
T.
Lewis-Atwell
,
P. A.
Townsend
, and
M. N.
Grayson
, “
Comparisons of different force fields in conformational analysis and searching of organic molecules: A review
,”
Tetrahedron
79
,
131865
(
2021
).
91.
L.
Xu
et al, “
Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models
,”
J. Phys. Chem. B
117
,
8408
(
2013
).
92.
X.
Liu
and
J.
Chen
, “
Residual structures and transient long-range interactions of p53 transactivation domain: Assessment of explicit solvent protein force fields
,”
J. Chem. Theory Comput.
15
,
4708
(
2019
).
93.
J. K.
Koneru
,
X.
Zhu
, and
J.
Mondal
, “
Quantitative assessment of the conformational heterogeneity in amylose across force fields
,”
J. Chem. Theory Comput.
15
,
6203
(
2019
).
94.
S.
Riniker
, “
Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: An overview
,”
J. Chem. Inf. Model.
58
,
565
(
2018
).
95.
R.
Galindo-Murillo
et al, “
Assessing the current state of Amber force field modifications for DNA
,”
J. Chem. Theory Comput.
12
,
4114
(
2016
).
96.
M. R.
Tucker
et al, “
Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes
,”
J. Phys. Chem. B
126
,
4442
(
2022
).
97.
A. D.
MacKerell
, Jr.
and
N. K.
Banavali
, “
All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution
,”
J. Comput. Chem.
21
,
105
(
2000
).
98.
D.
Tan
et al, “
RNA force field with accuracy comparable to state-of-the-art protein force fields
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E1346
(
2018
).
99.
A. H.
Aytenfisu
et al, “
Revised RNA dihedral parameters for the Amber force field improve RNA molecular dynamics
,”
J. Chem. Theory Comput.
13
,
900
(
2017
).
100.
S.
Vangaveti
,
S. V.
Ranganathan
, and
A. A.
Chen
, “
Advances in RNA molecular dynamics: A simulator’s guide to RNA force fields
,”
Wiley Interdiscip. Rev. RNA
8
,
e1396
(
2017
).
101.
B. L.
Foley
,
M. B.
Tessier
, and
R. J.
Woods
, “
Carbohydrate force fields
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
652
(
2012
).
102.
C. J.
Dickson
,
R. C.
Walker
, and
I. R.
Gould
, “
Lipid21: Complex lipid membrane simulations with AMBER
,”
J. Chem. Theory Comput.
18
,
1726
(
2022
).
103.
A.
Pérez
et al, “
Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers
,”
Biophys. J.
92
,
3817
(
2007
).
104.
W. L.
Jorgensen
et al, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
105.
H. W.
Horn
et al, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Chem. Phys.
120
,
9665
(
2004
).
106.
J. L.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
107.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
,
3863
(
2014
).
108.
Z.
Li
et al, “
Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models
,”
J. Chem. Theory Comput.
16
,
4429
(
2020
).
109.
Z.
Li
et al, “
Parametrization of trivalent and tetravalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models
,”
J. Chem. Theory Comput.
17
,
2342
(
2021
).
110.
S.
Piana
et al, “
Development of a force field for the simulation of single-chain proteins and protein–protein complexes
,”
J. Chem. Theory Comput.
16
,
2494
(
2020
).
111.
S.
Piana
et al, “
Water dispersion interactions strongly influence simulated structural properties of disordered protein states
,”
J. Phys. Chem. B
119
,
5113
(
2015
).
112.
C.-Y.
Zhou
,
F.
Jiang
, and
Y.-D.
Wu
, “
Residue-specific force field based on protein coil library. RSFF2: Modification of AMBER ff99SB
,”
J. Phys. Chem. B
119
,
1035
(
2015
).
113.
R. B.
Best
,
W.
Zheng
, and
J.
Mittal
, “
Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association
,”
J. Chem. Theory Comput.
10
,
5113
(
2014
).
114.
D. S.
Cerutti
et al, “
ff14ipq: A self-consistent force field for condensed-phase simulations of proteins
,”
J. Chem. Theory Comput.
10
,
4515
(
2014
).
115.
K. T.
Debiec
et al, “
Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model
,”
J. Chem. Theory Comput.
12
,
3926
(
2016
).
116.
J.
Huang
et al, “
CHARMM36m: An improved force field for folded and intrinsically disordered proteins
,”
Nat. Methods
14
,
71
(
2017
).
117.
L.-P.
Wang
et al, “
Building a more predictive protein force field: A systematic and reproducible route to AMBER-FB15
,”
J. Phys. Chem. B
121
,
4023
(
2017
).
118.
K. M.
Visscher
and
D. P.
Geerke
, “
Deriving force-field parameters from first principles using a polarizable and higher order dispersion model
,”
J. Chem. Theory Comput.
15
,
1875
(
2019
).
119.
Y.
Zhang
et al, “
Well-balanced force field ff03CMAP for folded and disordered proteins
,”
J. Chem. Theory Comput.
15
,
6769
(
2019
).
120.
M.
Marcellini
et al, “
Accurate prediction of protein NMR spin relaxation by means of polarizable force fields. Application to strongly anisotropic rotational diffusion
,”
J. Phys. Chem. B
124
,
5103
(
2020
).
121.
V. H.
Man
et al, “
Effects of all-atom molecular mechanics force fields on amyloid peptide assembly: The case of PHF6 peptide of tau protein
,”
J. Chem. Theory Comput.
17
,
6458
(
2021
).
122.
Y.
Qiu
,
W.
Shan
, and
H.
Zhang
, “
Force field benchmark of amino acids. 3. Hydration with scaled Lennard-Jones interactions
,”
J. Chem. Inf. Model.
61
,
3571
(
2021
).
123.
C. R.
Rupakheti
,
A. D.
MacKerell
, Jr.
, and
B.
Roux
, “
Global optimization of the Lennard-Jones parameters for the drude polarizable force field
,”
J. Chem. Theory Comput.
17
,
7085
(
2021
).
124.
L.
Yu
,
D.-W.
Li
, and
R.
Brüschweiler
, “
Systematic differences between current molecular dynamics force fields to represent local properties of intrinsically disordered proteins
,”
J. Phys. Chem. B
125
,
798
(
2021
).
125.
B.
Andrews
et al, “
Do molecular dynamics force fields accurately model Ramachandran distributions of amino acid residues in water?
,”
Phys. Chem. Chem. Phys.
24
,
3259
(
2022
).
126.
D. J.
Huggins
, “
Comparing the performance of different AMBER protein forcefields, partial charge assignments, and water models for absolute binding free energy calculations
,”
J. Chem. Theory Comput.
18
,
2616
(
2022
).
127.
K.
Liebl
and
M.
Zacharias
, “
The development of nucleic acids force fields: From an unchallenged past to a competitive future
,”
Biophys. J.
122
,
2841
(
2023
).
128.
H.-J.-C.
Berendsen
,
J.-R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
(
1987
).
129.
J.
Tirado-Rives
and
W. L.
Jorgensen
, “
Molecular dynamics of proteins with the OPLS potential functions. Simulation of the third domain of silver pheasant ovomucoid in water
,”
J. Am. Chem. Soc.
112
,
2773
(
1990
).
130.
M.
Orozco
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Mechanism for the rotamase activity of FK506 binding protein from molecular dynamics simulations
,”
Biochemistry
32
,
12864
(
1993
).
131.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
,
1657
(
1988
).
132.
M. D.
Beachy
et al, “
Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields
,”
J. Am. Chem. Soc.
119
,
5908
(
1997
).
133.
P.
Kollman
et al, “
The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data
,” in
Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications
(
Springer
,
1997
), p.
83
.
134.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
(
2000
).
135.
A.
Zhou
,
M.
Schauperl
, and
P. S.
Nerenberg
, “
Benchmarking electronic structure methods for accurate fixed-charge electrostatic models
,”
J. Chem. Inf. Model.
60
,
249
(
2019
).
136.
Y.
Duan
et al, “
A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations
,”
J. Comput. Chem.
24
,
1999
(
2003
).
137.
E.
Cances
,
B.
Mennucci
, and
J.
Tomasi
, “
A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
,”
J. Chem. Phys.
107
,
3032
(
1997
).
138.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
, “
The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level
,”
J. Mol. Struct.: THEOCHEM
464
,
211
(
1999
).
139.
C. S.
Pomelli
,
J.
Tomasi
, and
V.
Barone
, “
An improved iterative solution to solve the electrostatic problem in the polarizable continuum model
,”
Theor Chem. Acc.
105
,
446
(
2001
).
140.
A. E.
García
and
K. Y.
Sanbonmatsu
, “
α-helical stabilization by side chain shielding of backbone hydrogen bonds
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
2782
(
2002
).
141.
E. J.
Sorin
and
V. S.
Pande
, “
Exploring the helix-coil transition via all-atom equilibrium ensemble simulations
,”
Biophys. J.
88
,
2472
(
2005
).
142.
J. W.
Neidigh
,
R. M.
Fesinmeyer
, and
N. H.
Andersen
, “
Designing a 20-residue protein
,”
Nat. Struct. Biol.
9
,
425
(
2002
).
143.
A. G.
Cochran
,
N. J.
Skelton
, and
M. A.
Starovasnik
, “
Tryptophan zippers: Stable, monomeric β-hairpins
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
5578
(
2001
).
144.
S.
Marqusee
and
R. L.
Baldwin
, “
Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design
,”
Proc. Natl. Acad. Sci. U. S. A.
84
,
8898
(
1987
).
145.
R. M.
Fesinmeyer
et al, “
Studies of helix fraying and solvation using 13C′ isotopomers
,”
Protein Sci.
14
,
2324
(
2005
).
146.
R. B.
Best
and
G.
Hummer
, “
Optimized molecular dynamics force fields applied to the helix–coil transition of polypeptides
,”
J. Phys. Chem. B
113
,
9004
(
2009
).
147.
A.
Wlodawer
et al, “
Structure of bovine pancreatic trypsin inhibitor: Results of joint neutron and X-ray refinement of crystal form II
,”
J. Mol. Biol.
180
,
301
(
1984
).
148.
S.
Vijay-Kumar
,
C. E.
Bugg
, and
W. J.
Cook
, “
Structure of ubiquitin refined at 1.8 Å resolution
,”
J. Mol. Biol.
194
,
531
(
1987
).
149.
S.
Honda
et al, “
Crystal structure of a ten-amino acid protein
,”
J. Am. Chem. Soc.
130
,
15327
(
2008
).
150.
A.
Young
et al, “
Comparison of radiation-induced decay and structure refinement from X-ray data collected from lysozyme crystals at low and ambient temperatures
,”
J. Appl. Crystallogr.
26
,
309
(
1993
).
151.
R. B.
Best
and
J.
Mittal
, “
Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse
,”
J. Phys. Chem. B
114
,
14916
(
2010
).
152.
V.
Munoz
et al, “
Folding dynamics and mechanism of β-hairpin formation
,”
Nature
390
,
196
(
1997
).
153.
S.
Honda
,
N.
Kobayashi
, and
E.
Munekata
, “
Thermodynamics of a β-hairpin structure: Evidence for cooperative formation of folding nucleus
,”
J. Mol. Biol.
295
,
269
(
2000
).
154.
D.-W.
Li
and
R.
Brüschweiler
, “
NMR-based protein potentials
,”
Angew. Chem., Int. Ed.
49
,
6778
(
2010
).
155.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
Optimizing protein–solvent force fields to reproduce intrinsic conformational preferences of model peptides
,”
J. Chem. Theory Comput.
7
,
1220
(
2011
).
156.
P. S.
Nerenberg
et al, “
Optimizing solute–water van der Waals interactions to reproduce solvation free energies
,”
J. Phys. Chem. B
116
,
4524
(
2012
).
157.
D. S.
Cerutti
et al, “
Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization
,”
J. Phys. Chem. B
117
,
2328
(
2013
).
158.
K.
Takemura
and
A.
Kitao
, “
Water model tuning for improved reproduction of rotational diffusion and NMR spectral density
,”
J. Phys. Chem. B
116
,
6279
(
2012
).
159.
F.
Jiang
,
C.-Y.
Zhou
, and
Y.-D.
Wu
, “
Residue-specific force field based on the protein coil library. RSFF1: Modification of OPLS-AA/L
,”
J. Phys. Chem. B
118
,
6983
(
2014
).
160.
G. A.
Kaminski
et al, “
Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides
,”
J. Phys. Chem. B
105
,
6474
(
2001
).
161.
D.
Wang
et al, “
Evaluation of biologically relevant short α-helices stabilized by a main-chain hydrogen-bond surrogate
,”
J. Am. Chem. Soc.
128
,
9248
(
2006
).
162.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
, “
Building force fields: An automatic, systematic, and reproducible approach
,”
J. Phys. Chem. Lett.
5
,
1885
(
2014
).
163.
C.
Welker
et al, “
Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima
,”
Protein Sci.
8
,
394
(
1999
).
164.
V.
Iešmantavičius
et al, “
Modulation of the intrinsic helix propensity of an intrinsically disordered protein reveals long-range helix–helix interactions
,”
J. Am. Chem. Soc.
135
,
10155
(
2013
).
165.
S. H.
Brewer
et al, “
Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
16662
(
2005
).
166.
S.
Honda
et al, “
10 residue folded peptide designed by segment statistics
,”
Structure
12
,
1507
(
2004
).
167.
W.
Wang
et al, “
New force field on modeling intrinsically disordered proteins
,”
Chem. Biol. Drug Des.
84
,
253
(
2014
).
168.
A. D.
MacKerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
, “
Improved treatment of the protein backbone in empirical force fields
,”
J. Am. Chem. Soc.
126
,
698
(
2004
).
169.
A. D.
Mackerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
III
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
(
2004
).
170.
M. R.
Jensen
et al, “
Intrinsic disorder in measles virus nucleocapsids
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
9839
(
2011
).
171.
M.
Wells
et al, “
Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
5762
(
2008
).
172.
D.
Song
et al, “
ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins
,”
Chem. Biol. Drug Des.
89
,
5
(
2017
).
173.
F.
Casu
,
B. M.
Duggan
, and
M.
Hennig
, “
The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding
,”
Biophys. J.
105
,
1004
(
2013
).
174.
M.
Li
et al, “
The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix
,”
Nat. Struct. Biol.
7
,
113
(
2000
).
175.
J. N.
Rao
et al, “
A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins
,”
J. Am. Chem. Soc.
132
,
8657
(
2010
).
176.
A. D.
MacKerell
, Jr.
et al, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
(
1998
).
177.
D.
Song
,
R.
Luo
, and
H.-F.
Chen
, “
The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered proteins
,”
J. Chem. Inf. Model.
57
,
1166
(
2017
).
178.
I.
Radhakrishnan
et al, “
Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB
,”
FEBS Lett.
430
,
317
(
1998
).
179.
I.
Radhakrishnan
et al, “
Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interactions
,”
Cell
91
,
741
(
1997
).
180.
A.
Sillen
et al, “
NMR investigation of the interaction between the neuronal protein tau and the microtubules
,”
Biochemistry
46
,
3055
(
2007
).
181.
T.
Zor
et al, “
Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb
,”
J. Mol. Biol.
337
,
521
(
2004
).
182.
T.
Zor
et al, “
Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators
,”
J. Biol. Chem.
277
,
42241
(
2002
).
183.
H.-N.
Wu
,
F.
Jiang
, and
Y.-D.
Wu
, “
Significantly improved protein folding thermodynamics using a dispersion-corrected water model and a new residue-specific force field
,”
J. Phys. Chem. Lett.
8
,
3199
(
2017
).
184.
S.
Piana
et al, “
Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations
,”
PLoS One
7
,
e39918
(
2012
).
185.
S. A.
Showalter
and
R.
Brüschweiler
, “
Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field
,”
J. Chem. Theory Comput.
3
,
961
(
2007
).
186.
D. E.
Shaw
et al, “
Atomic-level characterization of the structural dynamics of proteins
,”
Science
330
,
341
(
2010
).
187.
W.
Shalongo
,
L.
Dugad
, and
E.
Stellwagen
, “
Distribution of helicity within the model peptide acetyl(AAQAA)3amide
,”
J. Am. Chem. Soc.
116
,
8288
(
1994
).
188.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
, “
How robust are protein folding simulations with respect to force field parameterization?
,”
Biophys. J.
100
,
L47
(
2011
).
189.
L. L.
Duan
et al, “
Folding of a helix at room temperature is critically aided by electrostatic polarization of intraprotein hydrogen bonds
,”
J. Am. Chem. Soc.
132
,
11159
(
2010
).
190.
Y.
Gao
et al, “
Polarization of intraprotein hydrogen bond is critical to thermal stability of short helix
,”
J. Phys. Chem. B
116
,
549
(
2012
).
191.
W.
Kang
,
F.
Jiang
, and
Y.-D.
Wu
, “
Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition
,”
J. Chem. Theory Comput.
14
,
4474
(
2018
).
192.
F.
Jiang
,
W.
Han
, and
Y.-D.
Wu
, “
Influence of side chain conformations on local conformational features of amino acids and implication for force field development
,”
J. Phys. Chem. B
114
,
5840
(
2010
).
193.
J.
Kubelka
et al, “
Sub-microsecond protein folding
,”
J. Mol. Biol.
359
,
546
(
2006
).
194.
R. P.
Joosten
et al, “
A series of PDB related databases for everyday needs
,”
Nucleic Acids Res.
39
,
D411
(
2010
).
195.
O.
Zhang
and
J. D.
Forman-Kay
, “
Structural characterization of folded and unfolded states of an SH3 domain in equilibrium in aqueous buffer
,”
Biochemistry
34
,
6784
(
1995
).
196.
V.
Bennett
and
D. M.
Gilligan
, “
The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane
,”
Annu. Rev. Cell Biol.
9
,
27
(
1993
).
197.
N. G.
Sgourakis
et al, “
The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: A combined MD/NMR study
,”
J. Mol. Biol.
368
,
1448
(
2007
).
198.
S.
Xiang
et al, “
Phosphorylation drives a dynamic switch in serine/arginine-rich proteins
,”
Structure
21
,
2162
(
2013
).
199.
J.
Graf
et al, “
Structure and dynamics of the homologous series of alanine peptides: A joint molecular dynamics/NMR study
,”
J. Am. Chem. Soc.
129
,
1179
(
2007
).
200.
H.-F.
Chen
and
R.
Luo
, “
Binding induced folding in p53–MDM2 complex
,”
J. Am. Chem. Soc.
129
,
2930
(
2007
).
201.
L.
Yu
,
D.-W.
Li
, and
R.
Brüschweiler
, “
Balanced amino-acid-specific molecular dynamics force field for the realistic simulation of both folded and disordered proteins
,”
J. Chem. Theory Comput.
16
,
1311
(
2019
).
202.
C.
Redfield
et al, “
Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4
,”
Biochemistry
31
,
10431
(
1992
).
203.
S. E.
Knowling
et al, “
Amino acid insertion reveals a necessary three-helical intermediate in the folding pathway of the colicin E7 immunity protein Im7
,”
J. Mol. Biol.
392
,
1074
(
2009
).
204.
D.
Song
et al, “
Environment-specific force field for intrinsically disordered and ordered proteins
,”
J. Chem. Inf. Model.
60
,
2257
(
2020
).
205.
F.
Avbelj
et al, “
Intrinsic backbone preferences are fully present in blocked amino acids
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
1272
(
2006
).
206.
Y.
Zhang
et al, “
Hydration effects on Leu’s polyproline II population in AcLXPNH2
,”
Chem. Commun.
54
,
5764
(
2018
).
207.
P. S.
Shabane
,
S.
Izadi
, and
A. V.
Onufriev
, “
General purpose water model can improve atomistic simulations of intrinsically disordered proteins
,”
J. Chem. Theory Comput.
15
,
2620
(
2019
).
208.
K. B.
Pedersen
,
J. C.
Flores-Canales
, and
B.
Schiøtt
, “
Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins
,”
Proteins
91
,
47
(
2023
).
209.
H.
Zhang
,
S.
Kim
, and
W.
Im
, “
Practical guidance for consensus scoring and force field selection in protein–ligand binding free energy simulations
,”
J. Chem. Inf. Model.
62
,
6084
(
2022
).
210.
X.
He
et al, “
A fast and high-quality charge model for the next generation general AMBER force field
,”
J. Chem. Phys.
153
,
114502
(
2020
).
211.
J.-J.
Feng
et al, “
Accurate structure prediction for protein loops based on molecular dynamics simulations with RSFF2C
,”
J. Chem. Theory Comput.
17
,
4614
(
2021
).
212.
G. H.
Zerze
et al, “
Evolution of all-atom protein force fields to improve local and global properties
,”
J. Phys. Chem. Lett.
10
,
2227
(
2019
).
213.
S. P.
Kadaoluwa Pathirannahalage
et al, “
Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations
,”
J. Chem. Inf. Model.
61
,
4521
(
2021
).
214.
H.-f.
Ye
et al, “
Machine learning for reparameterization of four-site water models: TIP4P-BG and TIP4P-BGT
,”
Phys. Chem. Chem. Phys.
23
,
10164
(
2021
).
215.
C.-L.
Zhao
et al, “
Seven-site effective pair potential for simulating liquid water
,”
J. Phys. Chem. B
123
,
4594
(
2019
).
216.
J.
Wang
et al, “
Machine learning-generated TIP4P-BGWT model for liquid and supercooled water
,”
J. Mol. Liq.
367
,
120459
(
2022
).
217.
C.-L.
Zhao
et al, “
Polarizable TIP7P water model with perturbation charges evaluated from ABEEM
,”
J. Phys. Chem. B
124
,
2450
(
2020
).
218.
J. A.
Rackers
et al, “
Polarizable water potential derived from a model electron density
,”
J. Chem. Theory Comput.
17
,
7056
(
2021
).
219.
X.
Wang
et al, “
Assessment of an electrostatic energy-based charge model for modeling the electrostatic interactions in water solvent
,”
J. Chem. Theory Comput.
19
,
6294
(
2023
).
220.
K.
Vanommeslaeghe
et al, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
(
2010
).
221.
M.
Schauperl
et al, “
Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2)
,”
Commun. Chem.
3
,
44
(
2020
).
222.
J.
Abramson
et al, “
Accurate structure prediction of biomolecular interactions with AlphaFold 3
,”
Nature
630
,
493
(
2024
).
223.
L.
Lu
et al, “
De novo design of drug-binding proteins with predictable binding energy and specificity
,”
Science
384
,
106
(
2024
).
224.
S.
Mansoor
et al, “
Protein ensemble generation through variational autoencoder latent space sampling
,”
J. Chem. Theory Comput.
20
,
2689
(
2024
).
225.
A.
Chakravorty
et al, “
Exploring the limits of the generalized CHARMM and AMBER force fields through predictions of hydration free energy of small molecules
,”
J. Chem. Inf. Model.
64
(
10
),
4089
(
2024
).
You do not currently have access to this content.