Dense suspensions exhibit a significant change in viscosity under external deformation, a phenomenon known as shear thickening. Recent studies have identified a stress-induced transition from lubricated, unconstrained interactions to frictional contacts, which play a crucial role in shear thickening. This work investigates the rheological behavior and frictional contact network evolution during continuous and discontinuous shear thickening (DST) in two-dimensional simulations. We find that at low stress, during weak thickening, the frictional contact network is composed of quasilinear chains along the compression axis. With increasing stress, the unweighted contact network becomes more isotropic and forms loop-like structures. We show that third-order loops within the frictional contact network are key to the DST. Our findings revealed a strong correlation between the number of third-order loops and the viscosity of the suspension. Notably, this relationship remains independent of the packing fraction, applied stress, and interparticle friction, highlighting the fundamental role of the mesoscale network topology in governing macroscopic rheology and connecting to the microscopic physics.

1.
E.
Brown
and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
,
046602
(
2014
).
2.
J. F.
Morris
, “
Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena
,”
Annu. Rev. Fluid Mech.
52
,
121
144
(
2020
).
3.
A.
Singh
, “
Hidden hierarchy in the rheology of dense suspensions
,”
MRS Commun.
13
,
971
979
(
2023
).
4.
M.
Wyart
and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
5.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
,”
J. Rheol.
58
,
1693
1724
(
2014
).
6.
C.
Ness
and
J.
Sun
, “
Shear thickening regimes of dense non-Brownian suspensions
,”
Soft Matter
12
,
914
924
(
2016
).
7.
A.
Singh
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
, “
A constitutive model for simple shear of dense frictional suspensions
,”
J. Rheol.
62
,
457
468
(
2018
).
8.
A.
Singh
,
C.
Ness
,
R.
Seto
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The ‘roll’ of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
9.
A.
Singh
,
G. L.
Jackson
,
M.
van der Naald
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Stress-activated constraints in dense suspension rheology
,”
Phys. Rev. Fluids
7
,
054302
(
2022
).
10.
B. J.
Maranzano
and
N. J.
Wagner
, “
The effects of particle size on reversible shear thickening of concentrated colloidal dispersions
,”
J. Chem. Phys.
114
,
10514
10527
(
2001
).
11.
B. M.
Guy
,
M.
Hermes
, and
W. C. K.
Poon
, “
Towards a unified description of the rheology of hard-particle suspensions
,”
Phys. Rev. Lett.
115
,
088304
(
2015
).
12.
B. J.
Maranzano
and
N. J.
Wagner
, “
The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions
,”
J. Rheol.
45
,
1205
1222
(
2001
).
13.
N. M.
James
,
E.
Han
,
R. A. L.
de la Cruz
,
J.
Jureller
, and
H. M.
Jaeger
, “
Interparticle hydrogen bonding can elicit shear jamming in dense suspensions
,”
Nat. Mater.
17
,
965
(
2018
).
14.
H. M.
Laun
, “
Rheological properties of aqueous polymer dispersions
,”
Angew. Makromol. Chem.
123
,
335
359
(
1984
).
15.
I. R.
Peters
,
S.
Majumdar
, and
H. M.
Jaeger
, “
Direct observation of dynamic shear jamming in dense suspensions
,”
Nature
532
,
214
217
(
2016
).
16.
S.
Barik
and
S.
Majumdar
, “
Origin of two distinct stress relaxation regimes in shear jammed dense suspensions
,”
Phys. Rev. Lett.
128
,
258002
(
2022
).
17.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
18.
H. A.
Vinutha
,
F. D.
Diaz Ruiz
,
X.
Mao
,
B.
Chakraborty
, and
E.
Del Gado
, “
Stress–stress correlations reveal force chains in gels
,”
J. Chem. Phys.
158
,
114104
(
2023
).
19.
D.
Mangal
,
M.
Nabizadeh
, and
S.
Jamali
, “
Topological origins of yielding in short-ranged weakly attractive colloidal gels
,”
J. Chem. Phys.
158
,
014903
(
2023
).
20.
E. D.
Gado
,
D.
Fiocco
,
G.
Foffi
,
S.
Manley
,
V.
Trappe
, and
A.
Zaccone
, “
Colloidal gelation
,” in
Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics
(
Wiley
,
2016
), pp.
279
291
.
21.
D.
Bi
,
J.
Zhang
,
B.
Chakraborty
, and
R. P.
Behringer
, “
Jamming by shear
,”
Nature
480
,
355
358
(
2011
).
22.
M. E.
Cates
,
J. P.
Wittmer
,
J.-P.
Bouchaud
, and
P.
Claudin
, “
Jamming, force chains, and fragile matter
,”
Phys. Rev. Lett.
81
,
1841
1844
(
1998
).
23.
R.
Seto
,
A.
Singh
,
B.
Chakraborty
,
M. M.
Denn
, and
J. F.
Morris
, “
Shear jamming and fragility in dense suspensions
,”
Granular Matter
21
,
82
(
2019
).
24.
B. M.
Guy
,
J.
Richards
,
D. J. M.
Hodgson
,
E.
Blanco
, and
W. C. K.
Poon
, “
Constraint-based approach to granular dispersion rheology
,”
Phys. Rev. Lett.
121
,
128001
(
2018
).
25.
A.
Singh
,
C.
Ness
,
A. K.
Sharma
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Rheology of bidisperse non-Brownian suspensions
,”
Phys. Rev. E
110
,
034901
(
2024
).
26.
C.-P.
Hsu
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
5117
(
2018
).
27.
C.
Clavaud
,
A.
Bérut
,
B.
Metzger
, and
Y.
Forterre
, “
Revealing the frictional transition in shear-thickening suspensions
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
5147
5152
(
2017
).
28.
R.
Seto
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
29.
S.
Jamali
and
J. F.
Brady
, “
Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics
,”
Phys. Rev. Lett.
123
,
138002
(
2019
).
30.
E.
Han
,
N. M.
James
, and
H. M.
Jaeger
, “
Stress controlled rheology of dense suspensions using transient flows
,”
Phys. Rev. Lett.
123
,
248002
(
2019
).
31.
M.
Ramaswamy
,
I.
Griniasty
,
D. B.
Liarte
,
A.
Shetty
,
E.
Katifori
,
E.
Del Gado
,
J. P.
Sethna
,
B.
Chakraborty
, and
I.
Cohen
, “
Universal scaling of shear thickening transitions
,”
J. Rheol.
67
,
1189
1197
(
2023
).
32.
A.
Boromand
,
S.
Jamali
,
B.
Grove
, and
J. M.
Maia
, “
A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions
,”
J. Rheol.
62
,
905
918
(
2018
).
33.
J. E.
Thomas
,
K.
Ramola
,
A.
Singh
,
R.
Mari
,
J. F.
Morris
, and
B.
Chakraborty
, “
Microscopic origin of frictional rheology in dense suspensions: Correlations in force space
,”
Phys. Rev. Lett.
121
,
128002
(
2018
).
34.
O.
Sedes
,
H. A.
Makse
,
B.
Chakraborty
, and
J. F.
Morris
, “
K-core analysis of shear-thickening suspensions
,”
Phys. Rev. Fluids
7
,
024304
(
2022
).
35.
M.
Gameiro
,
A.
Singh
,
L.
Kondic
,
K.
Mischaikow
, and
J. F.
Morris
, “
Interaction network analysis in shear thickening suspensions
,”
Phys. Rev. Fluids
5
,
034307
(
2020
).
36.
L. E.
Edens
,
S.
Pednekar
,
J. F.
Morris
,
G. K.
Schenter
,
A. E.
Clark
, and
J.
Chun
, “
Global topology of contact force networks: Insight into shear thickening suspensions
,”
Phys. Rev. E
99
,
012607
(
2019
).
37.
L. E.
Edens
,
E. G.
Alvarado
,
A.
Singh
,
J. F.
Morris
,
G. K.
Schenter
,
J.
Chun
, and
A. E.
Clark
, “
Shear stress dependence of force networks in 3D dense suspensions
,”
Soft Matter
17
,
7476
7486
(
2021
).
38.
M.
van der Naald
,
A.
Singh
,
T. T.
Eid
,
K.
Tang
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Minimally rigid clusters in dense suspension flow
,”
Nat. Phys.
20
,
653
(
2024
).
39.
M.
Nabizadeh
,
A.
Singh
, and
S.
Jamali
, “
Structure and dynamics of force clusters and networks in shear thickening suspensions
,”
Phys. Rev. Lett.
129
,
068001
(
2022
).
40.
A.
Goyal
,
N. S.
Martys
, and
E.
Del Gado
, “
Flow induced rigidity percolation in shear thickening suspensions
,”
J. Rheol.
68
,
219
228
(
2024
).
41.
M.
Nabizadeh
,
F.
Nasirian
,
X.
Li
,
Y.
Saraswat
,
R.
Waheibi
,
L. C.
Hsiao
,
D.
Bi
,
B.
Ravandi
, and
S.
Jamali
, “
Network physics of attractive colloidal gels: Resilience, rigidity, and phase diagram
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2316394121
(
2024
).
42.
J. E.
Thomas
,
A.
Goyal
,
D.
Singh Bedi
,
A.
Singh
,
E.
Del Gado
, and
B.
Chakraborty
, “
Investigating the nature of discontinuous shear thickening: Beyond a mean-field description
,”
J. Rheol.
64
,
329
341
(
2020
).
43.
L.
Papadopoulos
,
M. A.
Porter
,
K. E.
Daniels
, and
D. S.
Bassett
, “
Network analysis of particles and grains
,”
J. Complex Networks
6
,
485
565
(
2018
).
44.
R.
Arévalo
,
I.
Zuriguel
,
S. A.
Trevijano
, and
D.
Maza
, “
Third order loops of contacts in a granular force network
,”
Int. J. Bifurcation Chaos
20
,
897
903
(
2010
).
45.
A. G.
Smart
and
J. M.
Ottino
, “
Evolving loop structure in gradually tilted two-dimensional granular packings
,”
Phys. Rev. E
77
,
041307
(
2008
).
46.
N. R.
Blackett
, “
Disclination lines in glasses
,”
Philos. Mag. A
40
,
859
868
(
1979
).
47.
N.
Rivier
, “
Extended constraints, arches and soft modes in granular materials
,”
J. Non-Cryst. Solids
352
,
4505
4508
(
2006
), part of Special Issue: Proceedings of the 5th International Discussion Meeting on Relaxations in Complex Systems.
48.
C.
Mankoc
,
A.
Janda
,
R.
Arévalo
,
J. M.
Pastor
,
I.
Zuriguel
,
A.
Garcimartín
, and
D.
Maza
, “
The flow rate of granular materials through an orifice
,”
Granular Matter
9
,
407
414
(
2007
).
49.
A.
Tordesillas
,
D. M.
Walker
, and
Q.
Lin
, “
Force cycles and force chains
,”
Phys. Rev. E
81
,
011302
(
2010
).
50.
C.
Giusti
,
L.
Papadopoulos
,
E. T.
Owens
,
K. E.
Daniels
, and
D. S.
Bassett
, “
Topological and geometric measurements of force-chain structure
,”
Phys. Rev. E
94
,
032909
(
2016
).
51.
G.
Laman
, “
On graphs and rigidity of plane skeletal structures
,”
J. Eng. Math.
4
,
331
340
(
1970
).
52.
A.
Aminimajd
,
J.
Maia
, and
A.
Singh
, “
Robust prediction of frictional contact network in near-jamming suspensions employing deep graph neural networks
,” arXiv:2502.18743 (
2025
).
53.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Nonmonotonic flow curves of shear thickening suspensions
,”
Phys. Rev. E
91
,
052302
(
2015
).
54.
S.
Luding
, “
Cohesive, frictional powders: Contact models for tension
,”
Granular Matter
10
,
235
246
(
2008
).
55.
R. C.
Ball
and
J. R.
Melrose
, “
Lubrication breakdown in hydrodynamic simulations of concentrated colloids
,”
Adv. Colloid Interface Sci.
59
,
19
30
(
1995
).
56.
D. J.
Jeffrey
, “
The calculation of the low Reynolds number resistance functions for two unequal spheres
,”
Phys. Fluids A
4
,
16
29
(
1992
).
57.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
,
47
65
(
1979
).
58.
A.
Singh
,
V.
Magnanimo
,
K.
Saitoh
, and
S.
Luding
, “
The role of gravity or pressure and contact stiffness in granular rheology
,”
New J. Phys.
17
,
043028
(
2015
).
59.
J.
Comtet
,
G.
Chatté
,
A.
Niguès
,
L.
Bocquet
,
A.
Siria
, and
A.
Colin
, “
Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions
,”
Nat. Commun.
8
,
15633
(
2017
).
60.
S.
Sharma
,
A.
Sharma
, and
A.
Singh
, “
Frictional contact network in dense suspension flow
,” arXiv:2505.22747 (
2025
).
61.
C. D.
Cwalina
and
N. J.
Wagner
, “
Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,”
J. Rheol.
58
,
949
967
(
2014
).
62.
J. R.
Royer
,
D. L.
Blair
, and
S. D.
Hudson
, “
Rheological signature of frictional interactions in shear thickening suspensions
,”
Phys. Rev. Lett.
116
,
188301
(
2016
).
63.
A.
Singh
,
V.
Magnanimo
, and
S.
Luding
, “
Effect of friction and cohesion on anisotropy in quasi-static granular materials under shear
,”
AIP Conf. Proc.
1542
,
682
685
(
2013
).
64.
L.
Asimow
and
B.
Roth
, “
The rigidity of graphs
,”
Trans. Am. Math. Soc.
245
,
279
289
(
1978
).
65.
H.
Crapo
, “
Structural rigidity
,”
Struct. Topol.
1
,
26
45
(
1979
).
66.
D. M.
Walker
and
A.
Tordesillas
, “
Topological evolution in dense granular materials: A complex networks perspective
,”
Int. J. Solids Struct.
47
,
624
639
(
2010
).
67.
A.
Aminimajd
,
J.
Maia
, and
A.
Singh
, “
Scalability of a graph neural network in accurate prediction of frictional contact networks in suspensions
,”
Soft Matter
21
,
2826
(
2025
).
68.
S.
Pradeep
and
L. C.
Hsiao
, “
Contact criterion for suspensions of smooth and rough colloids
,”
Soft Matter
16
,
4980
4989
(
2020
).
69.
S.
Pradeep
,
M.
Nabizadeh
,
A. R.
Jacob
,
S.
Jamali
, and
L. C.
Hsiao
, “
Jamming distance dictates colloidal shear thickening
,”
Phys. Rev. Lett.
127
,
158002
(
2021
).
70.
H.
Tsurusawa
and
H.
Tanaka
, “
Hierarchical amorphous ordering in colloidal gelation
,”
Nat. Phys.
19
,
1171
1177
(
2023
).
71.
D.
Richard
,
J.
Hallett
,
T.
Speck
, and
C. P.
Royall
, “
Coupling between criticality and gelation in ‘sticky’ spheres: A structural analysis
,”
Soft Matter
14
,
5554
5564
(
2018
).
72.
C. P.
Royall
,
M. A.
Faers
,
S. L.
Fussell
, and
J. E.
Hallett
, “
Real space analysis of colloidal gels: Triumphs, challenges and future directions
,”
J. Phys.: Condens. Matter
33
,
453002
(
2021
).
73.
H. A.
Vinutha
,
M.
Marchand
,
M.
Caggioni
,
V. V.
Vasisht
,
E.
Del Gado
, and
V.
Trappe
, “
Memory of shear flow in soft jammed materials
,”
PNAS Nexus
3
,
pgae441
(
2024
).
You do not currently have access to this content.