Metals owe their unique mechanical properties to how defects emerge and propagate within their crystal structure under stress. However, the mechanisms leading from the early emerging (local) defects to the amplification of dislocations (collective plastic events) are not easy to track. Here, using tensile-stress atomistic simulations of a copper lattice as a case study, we revisit this classical problem under a new perspective based on local dynamics rather than on purely structural arguments. We use a data-driven approach that allows tracking how local fluctuations emerge and accumulate in the atomic lattice in space and time, anticipating/determining the emergence of local or collective structural defects during deformation. Building solely on the general concepts of local fluctuations and spatiotemporal fluctuation correlations, this approach allows characterizing in a unique way the evolution through the elastic, plastic, and fracture phases, describing metals as complex systems where collective phenomena originate from local dynamical triggering events.

1.
R. B.
Gordon
, “
Out of the fiery furnace: The impact of metals on the history of mankind by Robert Raymond
,”
Technol. Culture
29
,
673
675
(
1988
).
2.
C. P.
Sharma
,
Engineering Materials: Properties and Applications of Metals and Alloys
(
PHI Learning Pvt., Ltd.
,
2003
).
3.
R. S.
Rivlin
and
J. L.
Ericksen
,
Stress-Deformation Relations for Isotropic Materials
(
Springer
,
NY
,
1997
), pp.
911
1013
.
4.
Z.
Chen
,
H. J.
Bong
,
D.
Li
, and
R. H.
Wagoner
, “
The elastic–plastic transition of metals
,”
Int. J. Plast.
83
,
178
201
(
2016
).
5.
H. M.
Ledbetter
and
E. R.
Naimon
, “
Elastic properties of metals and alloys. II. Copper
,”
J. Phys. Chem. Ref. Data
3
,
897
935
(
1974
).
6.
P. M.
Anderson
,
J. P.
Hirth
, and
J.
Lothe
,
Theory of Dislocations
(
Cambridge University Press
,
2017
).
7.
J. w.
Christian
and
S.
Mahajan
, “
Deformation twinning
,”
Prog. Mater. Sci.
39
,
1
157
(
1995
).
8.
M.
Cioni
et al, “
Sampling real-time atomic dynamics in metal nanoparticles by combining experiments, simulations, and machine learning
,”
Adv. Sci.
11
,
2307261
(
2024
).
9.
E.
Arslan Irmak
,
P.
Liu
,
S.
Bals
, and
S.
Van Aert
, “
3D atomic structure of supported metallic nanoparticles estimated from 2D ADF stem images: A combination of atom-counting and a local minima search algorithm
,”
Small Methods
5
,
12
(
2021
).
10.
J. R.
Kermode
et al, “
Low-speed fracture instabilities in a brittle crystal
,”
Nature
455
,
1224
1227
(
2008
).
11.
D.
Weygand
,
M.
Mrovec
,
T.
Hochrainer
, and
P.
Gumbsch
, “
Multiscale simulation of plasticity in BCC metals
,”
Annu. Rev. Mater. Res.
45
,
369
390
(
2015
).
12.
A.
Linda
,
M. F.
Akhtar
, and
S.
Bhowmick
,
Deformation in Metals: Insights from Ab-Initio Calculations
(
Springer Nature
,
2023
), pp.
83
92
.
13.
S.
Kamran
,
K.
Chen
, and
L.
Chen
, “
Ab initio examination of ductility features of FCC metals
,”
Phys. Rev. B
79
,
024106
(
2009
).
14.
Z. X.
Guo
,
Multiscale Materials Modelling : Fundamentals and Applications
,
Woodhead Publishing in Materials
(
Woodhead Publishing
,
2007
).
15.
M. S.
Daw
and
M. I.
Baskes
, “
Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
,”
Phys. Rev. B
29
,
6443
6453
(
1984
).
16.
S.
Chaturvedi
,
A.
Verma
,
S. K.
Singh
, and
S.
Ogata
,
EAM Inter-atomic Potential—Its Implication on Nickel, Copper, and Aluminum (And Their Alloys)
(
Springer Nature
,
2022
), pp.
133
156
.
17.
S. M.
Rassoulinejad-Mousavi
,
Y.
Mao
, and
Y.
Zhang
, “
Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties
,”
J. Appl. Phys.
119
,
244304
(
2016
).
18.
D.
Wolf
,
V.
Yamakov
,
S. R.
Phillpot
,
A.
Mukherjee
, and
H.
Gleiter
, “
Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments?
,”
Acta Mater.
53
,
1
40
(
2005
).
19.
A.
Kedharnath
,
R.
Kapoor
, and
A.
Sarkar
, “
Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: A review
,”
Comput. Struct.
254
,
106614
(
2021
).
20.
L. D.
Nguyen
,
K. L.
Baker
, and
D. H.
Warner
, “
Atomistic predictions of dislocation nucleation with transition state theory
,”
Phys. Rev. B
84
,
024118
(
2011
).
21.
S.
Ryu
,
K.
Kang
, and
W.
Cai
, “
Predicting the dislocation nucleation rate as a function of temperature and stress
,”
J. Mater. Res.
26
,
2335
2354
(
2011
).
22.
J.
Li
,
K. J.
Van Vliet
,
T.
Zhu
,
S.
Yip
, and
S.
Suresh
, “
Atomistic mechanisms governing elastic limit and incipient plasticity in crystals
,”
Nature
418
,
307
310
(
2002
).
23.
A. T.
Jennings
et al, “
Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions
,”
Acta Mater.
61
,
2244
2259
(
2013
).
24.
L. A.
Zepeda-Ruiz
et al, “
Atomistic insights into metal hardening
,”
Nat. Mater.
20
,
315
320
(
2020
).
25.
L.
Dezerald
,
D.
Rodney
,
E.
Clouet
,
L.
Ventelon
, and
F.
Willaime
, “
Plastic anisotropy and dislocation trajectory in BCC metals
,”
Nat. Commun.
7
,
11695
(
2016
).
26.
M.
An
et al, “
Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
,”
Chin. Phys. B
29
,
046201
(
2020
).
27.
L. A.
Zepeda-Ruiz
,
A.
Stukowski
,
T.
Oppelstrup
, and
V. V.
Bulatov
, “
Probing the limits of metal plasticity with molecular dynamics simulations
,”
Nature
550
,
492
495
(
2017
).
28.
C. V.
Singh
,
A. J.
Mateos
, and
D. H.
Warner
, “
Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip
,”
Scr. Mater.
64
,
398
401
(
2011
).
29.
S.
Saroukhani
,
L. D.
Nguyen
,
K. W. K.
Leung
,
C. V.
Singh
, and
D. H.
Warner
, “
Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles
,”
J. Mech. Phys. Solids
90
,
203
214
(
2016
).
30.
S. J.
Zhou
,
D. L.
Preston
,
P. S.
Lomdahl
, and
D. M.
Beazley
, “
Large-scale molecular dynamics simulations of dislocation intersection in copper
,”
Science
279
,
1525
1527
(
1998
).
31.
J.
Cho
,
J.-F.
Molinari
, and
G.
Anciaux
, “
Mobility law of dislocations with several character angles and temperatures in FCC aluminum
,”
Int. J. Plast.
90
,
66
75
(
2017
).
32.
N.
Bertin
,
W.
Cai
,
S.
Aubry
, and
V. V.
Bulatov
, “
Core energies of dislocations in BCC metals
,”
Phys. Rev. Mater.
5
,
025002
(
2021
).
33.
R.
Madec
,
B.
Devincre
,
L.
Kubin
,
T.
Hoc
, and
D.
Rodney
, “
The role of collinear interaction in dislocation-induced hardening
,”
Science
301
,
1879
1882
(
2003
).
34.
N.
Bertin
,
V. V.
Bulatov
, and
F.
Zhou
, “
Learning dislocation dynamics mobility laws from large-scale md simulations
,”
npj Comput. Mater.
10
,
192
(
2024
).
35.
G. Q.
Xu
and
M. J.
Demkowicz
, “
Healing of nanocracks by disclinations
,”
Phys. Rev. Lett.
111
,
145501
(
2013
).
36.
G.
Xu
and
M. J.
Demkowicz
, “
Crack healing in nanocrystalline palladium
,”
Extreme Mech. Lett.
8
,
208
212
(
2016
).
37.
C. M.
Barr
et al, “
Autonomous healing of fatigue cracks via cold welding
,”
Nature
620
,
552
556
(
2023
).
38.
S.
Katnagallu
et al, “
Imaging individual solute atoms at crystalline imperfections in metals
,”
New J. Phys.
21
,
123020
(
2019
).
39.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
40.
H.
Tsuzuki
,
P. S.
Branicio
, and
J. P.
Rino
, “
Structural characterization of deformed crystals by analysis of common atomic neighborhood
,”
Comput. Phys. Commun.
177
,
518
523
(
2007
).
41.
P. M.
Larsen
,
S.
Schmidt
, and
J.
Schiøtz
, “
Robust structural identification via polyhedral template matching
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055007
(
2016
).
42.
E.
Maras
,
O.
Trushin
,
A.
Stukowski
,
T.
Ala-Nissila
, and
H.
Jónsson
, “
Global transition path search for dislocation formation in Ge on Si(001)
,”
Comput. Phys. Commun.
205
,
13
21
(
2016
).
43.
D.
Faken
and
H.
Jónsson
, “
Systematic analysis of local atomic structure combined with 3D computer graphics
,”
Comput. Mater. Sci.
2
,
279
286
(
1994
).
44.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
, “
Automated identification and indexing of dislocations in crystal interfaces
,”
Modell. Simul. Mater. Sci. Eng.
20
,
085007
(
2012
).
45.
M.
Cioni
et al, “
Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments
,”
J. Chem. Phys.
158
,
124701
(
2023
).
46.
D.
Rapetti
et al, “
Machine learning of atomic dynamics and statistical surface identities in gold nanoparticles
,”
Commun. Chem.
6
,
143
(
2023
).
47.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
48.
C.
Caruso
,
A.
Cardellini
,
M.
Crippa
,
D.
Rapetti
, and
G. M.
Pavan
, “
TimeSOAP: Tracking high-dimensional fluctuations in complex molecular systems via time variations of SOAP spectra
,”
J. Chem. Phys.
158
,
214302
(
2023
).
49.
M.
Crippa
,
A.
Cardellini
,
C.
Caruso
, and
G. M.
Pavan
, “
Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2300565120
(
2023
).
50.
M.
Crippa
,
A.
Cardellini
,
M.
Cioni
,
G.
Csányi
, and
G. M.
Pavan
, “
Machine learning of microscopic structure-dynamics relationships in complex molecular systems
,”
Mach. Learn.: Sci. Technol.
4
,
045044
(
2023
).
51.
M.
Becchi
,
F.
Fantolino
, and
G. M.
Pavan
, “
Layer-by-layer unsupervised clustering of statistically relevant fluctuations in noisy time-series data of complex dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2403771121
(
2024
).
52.
C.
Caruso
et al, “
Classification and spatiotemporal correlation of dominant fluctuations in complex dynamical systems
,”
PNAS Nexus
4
,
pgaf038
(
2025
).
53.
M. J.
Buehler
,
A.
Hartmaier
,
H.
Gao
,
M. A.
Duchaineau
, and
F. F.
Abraham
, “
The dynamical complexity of work-hardening: A large-scale molecular dynamics simulation
,”
Acta Mech. Sin.
21
,
103
111
(
2005
).
54.
J. D.
Honeycutt
and
H. C.
Andersen
, “
Molecular dynamics study of melting and freezing of small Lennard–Jones clusters
,”
J. Phys. Chem.
91
,
4950
4963
(
1987
).
55.
P. C.
Wo
,
L.
Zuo
, and
A. H. W.
Ngan
, “
Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation
,”
J. Mater. Res.
20
,
489
495
(
2005
).
56.
A. H. W.
Ngan
,
L.
Zuo
, and
P. C.
Wo
, “
Size dependence and stochastic nature of yield strength of micron-sized crystals: A case study on Ni3Al
,”
Proc. R. Soc. A
462
,
1661
1681
(
2006
).
57.
R. J.
Asaro
, “
Micromechanics of crystals and polycrystals
,”
Adv. Appl. Mech.
23
,
1
115
(
1983
).
58.
V. V.
Bulatov
et al, “
Dislocation multi-junctions and strain hardening
,”
Nature
440
,
1174
1178
(
2006
).
59.
J.
Yu
,
C.
Dong
,
Q.
Zhang
,
B.
Li
, and
R.
Liu
, “
Temperature and crystal orientation dependence of dislocation slip and twin nucleation in bilayer Ni/Ni3Al interface
,”
Comput. Mater. Sci.
162
,
162
170
(
2019
).
60.
L.
Chang
,
C.-Y.
Zhou
,
L.-L.
Wen
,
J.
Li
, and
X.-H.
He
, “
Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire
,”
Comput. Mater. Sci.
128
,
348
358
(
2017
).
61.
N.
Amadou
,
A. R. A.
Abdoulaye
,
T.
De Rességuier
, and
A.
Dragon
, “
Strain-rate dependence of plasticity and phase transition in [001]-oriented single-crystal iron
,”
Crystals
13
,
250
(
2023
).
62.
B. A.
Jasperson
et al, “
Cross-scale covariance for material property prediction
,”
npj Comput. Mater.
11
,
1
(
2025
).
63.
N.
Bertin
,
R.
Carson
,
V. V.
Bulatov
,
J.
Lind
, and
M.
Nelms
, “
Crystal plasticity model of BCC metals from large-scale MD simulations
,”
Acta Mater.
260
,
119336
(
2023
).
64.
A.
Stukowski
and
A.
Arsenlis
, “
On the elastic–plastic decomposition of crystal deformation at the atomic scale
,”
Modell. Simul. Mater. Sci. Eng.
20
,
035012
(
2012
).
65.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
11088
(
1998
).
66.
A.
Zaccone
and
E.
Scossa-Romano
, “
Approximate analytical description of the nonaffine response of amorphous solids
,”
Phys. Rev. B
83
,
184205
(
2011
).
67.
R.
Milkus
and
A.
Zaccone
, “
Local inversion-symmetry breaking controls the boson peak in glasses and crystals
,”
Phys. Rev. B
93
,
094204
(
2016
).
68.
J.
Krausser
,
R.
Milkus
, and
A.
Zaccone
, “
Non-affine lattice dynamics of defective fcc crystals
,”
Soft Matter
13
,
6079
6089
(
2017
).
69.
A. C. Y.
Liu
et al, “
Local symmetry predictors of mechanical stability in glasses
,”
Sci. Adv.
8
,
eabn0681
(
2022
).
70.
A.
Zaccone
,
Theory of Disordered Solids
(
Springer
,
Cham
,
2023
).
71.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
72.
V.
Del Tatto
,
G.
Fortunato
,
D.
Bueti
, and
A.
Laio
, “
Robust inference of causality in high-dimensional dynamical processes from the information imbalance of distance ranks
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2317256121
(
2024
).
73.
A. P.
Thompson
et al, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
74.
Y.
Mishin
,
M. J.
Mehl
,
D. A.
Papaconstantopoulos
,
A. F.
Voter
, and
J. D.
Kress
, “
Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations
,”
Phys. Rev. B
63
,
224106
(
2001
).
75.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
76.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
77.
B. D.
Todd
and
P. J.
Daivis
,
Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications
(
Cambridge University Press
,
2017
).
78.
M.
Perrone
,
M.
Cioni
,
M.
Delle Piane
, and
G. M.
Pavan
(
2025
). “
Data and scripts for the paper: `Unsupervised tracking of local and collective defects dynamics in metals under deformation
,” . https://doi.org/10.5281/zenodo.15536377
You do not currently have access to this content.