By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid–liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil–globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B). Chromatin particles are trapped in a harmonic potential to reproduce the coil and globular phases of an isolated polymer chain. We investigate the role of the droplet material B on the radius of gyration of this polymer and find that this radius varies nonmonotonically with respect to the volume fraction of B. This behavior is reminiscent of a phenomenon known as co-non-solvency: a polymer chain in a good solvent (S) may collapse when a second good solvent (here B) is added in low quantity and expands at higher B concentration. In addition, the presence of finite-size effects on the coil–globule transition results in a qualitatively different impact of the droplet material on polymers of various sizes. In the context of genetic regulation, our results suggest that the size of chromatin domains and the quantity of condensate proteins are key parameters to control whether chromatin may respond to an increase in the quantity of chromatin-binding proteins by condensing or expanding.

1.
C. P.
Brangwynne
,
C. R.
Eckmann
,
D. S.
Courson
,
A.
Rybarska
,
C.
Hoege
,
J.
Gharakhani
,
F.
Jülicher
, and
A. A.
Hyman
,
Science
324
,
1729
(
2009
).
2.
Y.
Shin
and
C. P.
Brangwynne
,
Science
357
,
eaaf4382
(
2017
).
3.
Y.
Shin
,
Y.-C.
Chang
,
D. S. W.
Lee
,
J.
Berry
,
D. W.
Sanders
,
P.
Ronceray
,
N. S.
Wingreen
,
M.
Haataja
, and
C. P.
Brangwynne
,
Cell
175
,
1481
(
2018
).
4.
B. A.
Gibson
,
L. K.
Doolittle
,
M. W. G.
Schneider
,
L. E.
Jensen
,
N.
Gamarra
,
L.
Henry
,
D. W.
Gerlich
,
S.
Redding
, and
M. K.
Rosen
,
Cell
179
,
470
(
2019
).
5.
C. A.
Weber
,
D.
Zwicker
,
F.
Jülicher
, and
C. F.
Lee
,
Rep. Prog. Phys.
82
,
064601
(
2019
).
6.
B. R.
Sabari
,
A.
Dall’Agnese
, and
R. A.
Young
,
Trends Biochem. Sci.
45
,
961
(
2020
).
7.
B.
Gouveia
,
Y.
Kim
,
J. W.
Shaevitz
,
S.
Petry
,
H. A.
Stone
, and
C. P.
Brangwynne
,
Nature
609
,
255
(
2022
).
8.
M. N.
Rouches
and
B. B.
Machta
, arXiv:2404.19158 (
2024
).
9.
D.
Hnisz
,
K.
Shrinivas
,
R. A.
Young
,
A. K.
Chakraborty
, and
P. A.
Sharp
,
Cell
169
,
13
(
2017
).
10.
K.
Rippe
,
Cold Spring Harbor Perspect. Biol.
14
,
a040683
(
2022
).
11.
J.
Wu
,
B.
Chen
,
Y.
Liu
,
L.
Ma
,
W.
Huang
, and
Y.
Lin
,
Nat. Commun.
13
,
2663
(
2022
).
12.
13.
D.
Zwicker
,
Curr. Opin. Colloid Interface Sci.
61
,
101606
(
2022
); arXiv:2202.13646v3.
14.
B.
Wang
,
L.
Zhang
,
T.
Dai
,
Z.
Qin
,
H.
Lu
,
L.
Zhang
, and
F.
Zhou
,
Signal Transduction Targeted Ther.
6
,
290
(
2021
).
15.
F. G.
Fernández
,
S.
Huet
, and
J.
Miné-Hattab
,
Int. J. Mol. Sci.
24
,
15975
(
2023
).
16.
G. J.
Filion
,
J. G.
van Bemmel
,
U.
Braunschweig
,
W.
Talhout
,
J.
Kind
,
L. D.
Ward
,
W.
Brugman
,
I. J.
de Castro
,
R. M.
Kerkhoven
,
H. J.
Bussemaker
, and
B.
van Steensel
,
Cell
143
,
212
(
2010
).
17.
A. N.
Boettiger
,
B.
Bintu
,
J. R.
Moffitt
,
S.
Wang
,
B. J.
Beliveau
,
G.
Fudenberg
,
M.
Imakaev
,
L. A.
Mirny
,
C.-t.
Wu
, and
X.
Zhuang
,
Nature
529
,
418
(
2016
).
18.
D. I.
Cattoni
,
A. M.
Cardozo Gizzi
,
M.
Georgieva
,
M.
Di Stefano
,
A.
Valeri
,
D.
Chamousset
,
C.
Houbron
,
S.
Déjardin
,
J.-B.
Fiche
,
I.
Gonzalez
,
J.-M.
Chang
,
T.
Sexton
,
M. A.
Marti-Renom
,
F.
Bantignies
,
G.
Cavalli
, and
M.
Nollmann
,
Nat. Commun.
8
,
1753
(
2017
).
19.
Q.
Szabo
,
D.
Jost
,
J.-M.
Chang
,
D. I.
Cattoni
,
G. L.
Papadopoulos
,
B.
Bonev
,
T.
Sexton
,
J.
Gurgo
,
C.
Jacquier
,
M.
Nollmann
,
F.
Bantignies
, and
G.
Cavalli
,
Sci. Adv.
4
,
eaar8082
(
2018
).
20.
T.
Sexton
,
E.
Yaffe
,
E.
Kenigsberg
,
F.
Bantignies
,
B.
Leblanc
,
M.
Hoichman
,
H.
Parrinello
,
A.
Tanay
, and
G.
Cavalli
,
Cell
148
,
458
(
2012
).
21.
D.
Jost
,
P.
Carrivain
,
G.
Cavalli
, and
C.
Vaillant
,
Nucleic Acids Res.
42
,
9553
(
2014
).
22.
A. Y.
Grosberg
and
A.
Khokhlov
,
Giant Molecules: Here and There and Everywhere
(
World Scientific Publishing
,
2011
).
23.
I.
Nishio
,
S.-T.
Sun
,
G.
Swislow
, and
T.
Tanaka
,
Nature
281
,
208
(
1979
).
24.
P.
Grassberger
and
R.
Hegger
,
J. Chem. Phys.
102
,
6881
(
1995
).
25.
S. M.
Bhattacharjee
,
A.
Giacometti
, and
A.
Maritan
,
J. Phys.: Condens. Matter
25
,
503101
(
2013
).
26.
B. R.
Caré
,
P.
Carrivain
,
T.
Forné
,
J.-M.
Victor
, and
A.
Lesne
,
Commun. Theor. Phys.
62
,
607
(
2014
).
27.
B. R.
Caré
,
P.-E.
Emeriau
,
R.
Cortini
, and
J.-M.
Victor
,
AIMS Biophys.
2
,
517
(
2015
).
28.
A.
Lesage
,
V.
Dahirel
,
J.-M.
Victor
, and
M.
Barbi
,
Epigenet. Chromatin
12
,
28
(
2019
).
30.
D.
Mukherji
,
C. M.
Marques
, and
K.
Kremer
,
Nat. Commun.
5
,
4882
(
2014
).
31.
D.
Mukherji
,
C. M.
Marques
, and
K.
Kremer
,
J. Phys.: Condens. Matter
30
,
024002
(
2018
).
32.
S.
Bharadwaj
and
N. F. A.
van der Vegt
,
Macromolecules
52
,
4131
(
2019
).
33.
S.
Guha
and
M. K.
Mitra
,
Soft Matter
19
,
153
(
2022
).
35.
J.-K.
Ryu
,
D.-E.
Hwang
, and
J.-M.
Choi
,
Int. J. Mol. Sci.
22
,
10736
(
2021
).
36.
C. A.
Brackley
,
S.
Taylor
,
A.
Papantonis
,
P. R.
Cook
, and
D.
Marenduzzo
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
E3605
(
2013
).
37.
O.
Adame-Arana
,
G.
Bajpai
,
D.
Lorber
,
T.
Volk
, and
S.
Safran
,
eLife
12
,
e82983
(
2023
).
38.
H.
Sellou
,
T.
Lebeaupin
,
C.
Chapuis
,
R.
Smith
,
A.
Hegele
,
H. R.
Singh
,
M.
Kozlowski
,
S.
Bultmann
,
A. G.
Ladurner
,
G.
Timinszky
, and
S.
Huet
,
Mol. Biol. Cell
27
,
3791
(
2016
).
39.
R.
Smith
,
S.
Zentout
,
M.
Rother
,
N.
Bigot
,
C.
Chapuis
,
A.
Mihuț
,
F. F.
Zobel
,
I.
Ahel
,
H.
van Attikum
,
G.
Timinszky
, and
S.
Huet
,
Nat. Struct. Mol. Biol.
30
,
678
(
2023
).
40.
J.-M.
Victor
and
D.
Lhuillier
,
J. Chem. Phys.
92
,
1362
(
1990
).
41.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover Publications, Inc.
,
Mineola, NY
,
1984
).
42.
I.
Prigogine
and
R.
Defay
,
Chemical Thermodynamics
(
Longmans Green
,
Everett; London
,
1954
).
43.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
44.
J.
Berry
,
C. P.
Brangwynne
, and
M.
Haataja
,
Rep. Prog. Phys.
81
,
046601
(
2018
).
45.
J.
Kirschbaum
and
D.
Zwicker
,
J. R. Soc. Interface
18
,
20210255
(
2021
).
46.
J.
Kirschbaum
, “
Chemical reactions as control mechanisms for biomolecular condensates
,” Ph.D. dissertation (
Physics of Biological and Complex Systems of the Göttingen Graduate School of Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen
,
2022
).
47.
COMSOL Multiphysics Reference Manual, v. 6.0,
COMSOL, Inc.
,
Stockholm, Sweden
,
2021
.
48.
H. G.
Schild
,
M.
Muthukumar
, and
D. A.
Tirrell
,
Macromolecules
24
,
948
(
1991
).
49.
B.
Dünweg
and
K.
Kremer
,
J. Chem. Phys.
99
,
6983
(
1993
).
50.
L. E.
Wedgewood
,
D. N.
Ostrov
, and
R. B.
Bird
,
J. Non-Newtonian Fluid Mech.
40
,
119
(
1991
).
51.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
52.
M. M.
Tortora
,
L. D.
Brennan
,
G.
Karpen
, and
D.
Jost
,
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2211855120
(
2023
).
53.
C.
Hoffmann
,
K. M.
Ruff
,
I. A.
Edu
,
M. K.
Shinn
,
J. V.
Tromm
,
M. R.
King
,
A.
Pant
,
H.
Ausserwöger
,
J. R.
Morgan
,
T. P. J.
Knowles
,
R. V.
Pappu
, and
D.
Milovanovic
, bioRxiv:2024.08.03.606464 (
2024
).
54.
T. J.
Welsh
,
G.
Krainer
,
J. R.
Espinosa
,
J. A.
Joseph
,
A.
Sridhar
,
M.
Jahnel
,
W. E.
Arter
,
K. L.
Saar
,
S.
Alberti
,
R.
Collepardo-Guevara
, and
T. P. J.
Knowles
,
Nano Lett.
22
,
612
621
(
2022
).
55.
C. P.
Brangwynne
,
P.
Tompa
, and
R. V.
Pappu
,
Nat. Phys.
11
,
899
(
2015
).
56.
R.
Laghmach
and
D. A.
Potoyan
,
Phys. Biol.
18
,
015001
(
2021
).
57.
M. L.
Nosella
and
J. D.
Forman-Kay
,
Curr. Opin. Cell Biol.
69
,
30
40
(
2021
).
You do not currently have access to this content.