This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin–orbit coupling of the isomers. In [Ir(ppy)2(bpy)]+, transition dipole moment differences play a significant role in controlling the relative lifetime of the triplet states, which we rationalized by a vectorial analysis of permanent dipole moments of the ground and excited states. Regarding the two isomers of Ir(ppy)3, changes in radiative decay rates were primarily attributed to variations in vertical energy gaps and intensity borrowing from other singlet-singlet transitions driven by spin–orbit coupling. Non-radiative decay variations were assessed in terms of differences in reorganization energies, adiabatic energy gap, and spin–orbit coupling. For both complexes, reorganization energies associated with low-energy molecular vibrations and metal–ligand bond length changes following the de-excitation process were major contributors. These insights provide a deeper understanding of how molecular design can be leveraged to optimize the performance of iridium-based photoredox catalysts, potentially guiding the development of more efficient catalytic systems for future applications.

1.
A.
Colombo
,
C.
Dragonetti
,
V.
Guerchais
,
C.
Hierlinger
,
E.
Zysman-Colman
, and
D.
Roberto
, “
A trip in the nonlinear optical properties of iridium complexes
,”
Coord. Chem. Rev.
414
,
213293
(
2020
).
2.
J.
Jayabharathi
,
V.
Thanikachalam
, and
S.
Thilagavathy
, “
Phosphorescent organic light-emitting devices: Iridium based emitter materials – an overview
,”
Coord. Chem. Rev.
483
,
215100
(
2023
).
3.
J.
Shen
,
T. W.
Rees
,
L.
Ji
, and
H.
Chao
, “
Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging
,”
Coord. Chem. Rev.
443
,
214016
(
2021
).
4.
D. M.
Arias-Rotondo
and
J. K.
McCusker
, “
The photophysics of photoredox catalysis: A roadmap for catalyst design
,”
Chem. Soc. Rev.
45
(
21
),
5803
5820
(
2016
).
5.
I. N.
Mills
,
J. A.
Porras
, and
S.
Bernhard
, “
Judicious design of cationic, cyclometalated Ir(III) complexes for photochemical energy conversion and optoelectronics
,”
Acc. Chem. Res.
51
(
2
),
352
364
(
2018
).
6.
B.
Wardle
,
Principles and Applications of Photochemistry
(
Wiley
,
2009
).
7.
L.
Flamigni
,
A.
Barbieri
,
C.
Sabatini
,
B.
Ventura
, and
F.
Barigelletti
, “
Photochemistry and photophysics of coordination compounds: Iridium
,” in
Photochemistry and Photophysics of Coordination Compounds II
(
Springer
,
2007
), pp.
143
203
.
8.
E.
Medina
and
B.
Pinter
, “
Electron density difference analysis on the oxidative and reductive quenching cycles of classical iridium and ruthenium photoredox catalysts
,”
J. Phys. Chem. A
124
(
21
),
4223
4234
(
2020
).
9.
G. J.
Hedley
,
A.
Ruseckas
, and
I. D. W.
Samuel
, “
Ultrafast luminescence in Ir(ppy)3
,”
Chem. Phys. Lett.
450
(
4–6
),
292
296
(
2008
).
10.
S.
Ladouceur
,
D.
Fortin
, and
E.
Zysman-Colman
, “
Enhanced luminescent iridium(III) complexes bearing aryltriazole cyclometallated ligands
,”
Inorg. Chem.
50
(
22
),
11514
11526
(
2011
).
11.
L.
Arnaut
and
H.
Burrows
,
Chemical Kinetics: From Molecular Structure to Chemical Reactivity
(
Elsevier
,
2006
).
12.
M. R.
Schreier
,
X.
Guo
,
B.
Pfund
,
Y.
Okamoto
,
T. R.
Ward
,
C.
Kerzig
, and
O. S.
Wenger
, “
Water-soluble tris(cyclometalated) iridium(III) complexes for aqueous electron and energy transfer photochemistry
,”
Acc. Chem. Res.
55
(
9
),
1290
1300
(
2022
).
13.
J. D.
Nguyen
,
E. M.
D’Amato
,
J. M. R.
Narayanam
, and
C. R. J.
Stephenson
, “
Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions
,”
Nat. Chem.
4
(
10
),
854
859
(
2012
).
14.
E. D.
Nacsa
and
D. W. C.
MacMillan
, “
Spin-center shift-enabled direct enantioselective α-benzylation of aldehydes with alcohols
,”
J. Am. Chem. Soc.
140
(
9
),
3322
3330
(
2018
).
15.
G.
Shukla
,
M.
Singh
,
S.
Singh
, and
M. S.
Singh
, “
Iridium(III)-catalyzed photoredox cross-coupling of alkyl bromides with trialkyl amines: Access to α-alkylated aldehydes
,”
Chem. Commun.
60
(
41
),
5435
5438
(
2024
).
16.
C. R.
Bock
,
J. A.
Connor
,
A. R.
Gutierrez
,
T. J.
Meyer
,
D. G.
Whitten
,
B. P.
Sullivan
, and
J. K.
Nagle
, “
Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes
,”
J. Am. Chem. Soc.
101
(
17
),
4815
4824
(
1979
).
17.
C.
Gao
,
J.
Wang
,
H.
Xu
, and
Y.
Xiong
, “
Coordination chemistry in the design of heterogeneous photocatalysts
,”
Chem. Soc. Rev.
46
(
10
),
2799
2823
(
2017
).
18.
M. S.
Lowry
and
S.
Bernhard
, “
Synthetically tailored excited states: Phosphorescent, cyclometalated iridium(III) complexes and their applications
,”
Chem.—Eur. J.
12
(
31
),
7970
7977
(
2006
).
19.
S.
Hammes-Schiffer
, “
Catalysts by design: The power of theory
,”
Acc. Chem. Res.
50
(
3
),
561
566
(
2017
).
20.
A.
Baschieri
,
L.
Sambri
,
A.
Mazzanti
,
A.
Carlone
,
F.
Monti
, and
N.
Armaroli
, “
Iridium(III) complexes with fluorinated phenyl-tetrazoles as cyclometalating ligands: Enhanced excited-state energy and blue emission
,”
Inorg. Chem.
59
(
22
),
16238
16250
(
2020
).
21.
J. R.
Ochola
and
M. O.
Wolf
, “
The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis
,”
Org. Biomol. Chem.
14
(
38
),
9088
9092
(
2016
).
22.
N.
Kandoth
,
J.
Pérez Hernández
,
E.
Palomares
, and
J.
Lloret-Fillol
, “
Mechanisms of photoredox catalysts: The role of optical spectroscopy
,”
Sustainable Energy Fuels
5
(
3
),
638
665
(
2021
).
23.
I.
Tunell
,
Z.
Rinkevicius
,
O.
Vahtras
,
P.
Salek
,
T.
Helgaker
, and
H.
Agren
, “
Density functional theory of nonlinear triplet response properties with applications to phosphorescence
,”
J. Chem. Phys.
119
(
21
),
11024
11034
(
2003
).
24.
E.
Jansson
,
B.
Minaev
,
S.
Schrader
, and
H.
Ågren
, “
Time-dependent density functional calculations of phosphorescence parameters for fac-tris(2-phenylpyridine) iridium
,”
Chem. Phys.
333
(
2–3
),
157
167
(
2007
).
25.
K.
Mori
,
T. P. M.
Goumans
,
E.
Van Lenthe
, and
F.
Wang
, “
Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin–orbit coupling
,”
Phys. Chem. Chem. Phys.
16
(
28
),
14523
14530
(
2014
).
26.
R.
Englman
and
J.
Jortner
, “
The energy gap law for radiationless transitions in large molecules
,”
Mol. Phys.
18
(
2
),
145
164
(
1970
).
27.
J. H.
Kim
,
S. Y.
Kim
,
Y. J.
Cho
,
H. J.
Son
,
D. W.
Cho
, and
S. O.
Kang
, “
A detailed evaluation for the nonradiative processes in highly phosphorescent iridium(III) complexes
,”
J. Phys. Chem. C
122
(
7
),
4029
4036
(
2018
).
28.
Y.
Niu
,
Q.
Peng
,
C.
Deng
,
X.
Gao
, and
Z.
Shuai
, “
Theory of excited state decays and optical spectra: Application to polyatomic molecules
,”
J. Phys. Chem. A
114
(
30
),
7817
7831
(
2010
).
29.
Q.
Peng
,
Y.
Niu
,
Q.
Shi
,
X.
Gao
, and
Z.
Shuai
, “
Correlation function formalism for triplet excited state decay: Combined spin-orbit and nonadiabatic couplings
,”
J. Chem. Theory Comput.
9
(
2
),
1132
1143
(
2013
).
30.
Y.
Luo
,
Z.
Chen
,
Z.
Xu
, and
D.
Tang
, “
Unveiling the influence of the various-membered ring structures on the performance of Ir(III) complexes: Phosphorescent quantum yields and stabilities
,”
New J. Chem.
47
(
8
),
3793
3801
(
2023
).
31.
A. B.
Tamayo
,
B. D.
Alleyne
,
P. I.
Djurovich
,
S.
Lamansky
,
I.
Tsyba
,
N. N.
Ho
,
R.
Bau
, and
M. E.
Thompson
, “
Synthesis and characterization of facial and meridional tris-cyclometalated Iridium(III) complexes
,”
J. Am. Chem. Soc.
125
(
24
),
7377
7387
(
2003
).
32.
S.
Arroliga-Rocha
and
D.
Escudero
, “
Facial and meridional isomers of tris(bidentate) Ir(III) complexes: Unravelling their different excited state reactivity
,”
Inorg. Chem.
57
(
19
),
12106
12112
(
2018
).
33.
D.
Escudero
, “
Mer-Ir(ppy)3 to fac-Ir(ppy)3 photoisomerization
,”
ChemPhotoChem
3
(
9
),
697
701
(
2019
).
34.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A.
V Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J.
V Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision C.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
35.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
36.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
(
45
),
11623
11627
(
1994
).
37.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
,”
J. Chem. Phys.
82
(
1
),
270
283
(
1985
).
38.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
,”
J. Chem. Phys.
82
(
1
),
299
310
(
1985
).
39.
W. R.
Wadt
,
P.
Jeffrey Hay
,
W. A.
Wadt
, and
P. J.
Hay
, “
Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
,”
J. Chem. Phys.
82
(
1
),
284
298
(
1985
).
40.
R.
Ditchfield
,
W. J.
Hehre
,
J. A.
Pople
,
R.
Ditcrfield
,
W. J.
Herre
, and
D. A.
Pople
, “
Self‐Consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules
,”
J. Chem. Phys.
54
(
2
),
724
728
(
1971
).
41.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
(
3
),
213
222
(
1973
).
42.
W. J.
Hehre
,
R.
Ditchfield
,
J. A.
Pople
,
F. T.
Wall
,
L. A.
Hiller
,
D. J.
Wheeler
,
J.
Chern Phys
,
J. M.
Hammersley
,
K. W.
Morton
,
J.
Roy Stat Soc
,
W. J.
Herre
, and
R.
Ditcrfield
, “
Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
(
5
),
2257
2261
(
1972
).
43.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
, “
Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes
,”
J. Chem. Phys.
119
(
23
),
12129
12137
(
2003
).
44.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
, “
Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt
,”
J. Chem. Phys.
130
(
16
),
164108
(
2009
).
45.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
(
9
),
6796
6806
(
1992
).
46.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
47.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
(
18
),
6378
6396
(
2009
).
48.
B.
de Souza
,
G.
Farias
,
F.
Neese
, and
R.
Izsak
, “
Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics
,”
J. Chem. Theory Comput.
15
(
3
),
1896
1904
(
2019
).
49.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
(
22
),
224108
(
2020
).
50.
E. v.
Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
(
6
),
4597
4610
(
1993
).
51.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
, “
Relativistic total energy using regular approximations
,”
J. Chem. Phys.
101
(
11
),
9783
9792
(
1994
).
52.
D. A.
Pantazis
,
X.-Y.
Chen
,
C. R.
Landis
, and
F.
Neese
, “
All-electron scalar relativistic basis sets for third-row transition metal atoms
,”
J. Chem. Theory Comput.
4
(
6
),
908
919
(
2008
).
53.
L. E.
Roy
,
E.
Jakubikova
,
M. G.
Guthrie
, and
E. R.
Batista
, “
Calculation of one-electron redox potentials revisited. Is it possible to calculate accurate potentials with density functional methods?
,”
J. Phys. Chem. A
113
(
24
),
6745
6750
(
2009
).
54.
M.-H.
Baik
and
R. A.
Friesner
, “
Computing redox potentials in solution: Density functional theory as a tool for rational design of redox agents
,”
J. Phys. Chem. A
106
(
32
),
7407
7412
(
2002
).
55.
T. B.
Demissie
,
K.
Ruud
, and
J. H.
Hansen
, “
DFT as a powerful predictive tool in photoredox catalysis: Redox potentials and mechanistic analysis
,”
Organometallics
34
(
17
),
4218
4228
(
2015
).
56.
D.
Jacquemin
,
B.
Mennucci
, and
C.
Adamo
, “
Excited-state calculations with TD-DFT: From benchmarks to simulations in complex environments
,”
Phys. Chem. Chem. Phys.
13
(
38
),
16987
16998
(
2011
).
57.
B.
Suo
,
K.
Shen
,
Z.
Li
, and
W.
Liu
, “
Performance of TD-DFT for excited states of open-shell transition metal compounds
,”
J. Phys. Chem. A
121
(
20
),
3929
3942
(
2017
).
58.
C.
Sandoval-Pauker
and
B.
Pinter
, “
Electronic structure analysis of copper photoredox catalysts using the quasi-restricted orbital approach
,”
J. Chem. Phys.
157
(
7
),
74306
(
2022
).
59.
E.
Medina
,
C.
Sandoval-Pauker
,
P.
Salvador
, and
B.
Pinter
, “
Mechanistic insights into the oxidative and reductive quenching cycles of transition metal photoredox catalysts through effective oxidation state analysis
,”
Inorg. Chem.
61
(
47
),
18923
18933
(
2022
).
60.
E.
Medina
and
B.
Pinter
, “
A DFT study on the redox active behavior of carbene and pyridine ligands in the oxidative and reductive quenching cycles of ruthenium photoredox catalysts
,”
Catalysts
10
,
80
(
2020
).
61.
S. J.
Strickler
and
R. A.
Berg
, “
Relationship between absorption intensity and fluorescence lifetime of molecules
,”
J. Chem. Phys.
37
(
4
),
814
822
(
1962
).
62.
T. M.
Aminabhavi
and
B.
Gopalakrishna
, “
Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K
,”
J. Chem. Eng. Data
40
(
4
),
856
861
(
1995
).
63.
Y.
Niu
,
W.
Li
,
Q.
Peng
,
H.
Geng
,
Y.
Yi
,
L.
Wang
,
G.
Nan
,
D.
Wang
, and
Z.
Shuai
, “
MOlecular MAterials property prediction package (MOMAP) 1.0: A software package for predicting the luminescent properties and mobility of organic functional materials
,”
Mol. Phys.
116
(
7–8
),
1078
1090
(
2018
).
64.
Q.
Peng
,
Y.
Yi
,
Z.
Shuai
, and
J.
Shao
, “
Toward quantitative prediction of molecular fluorescence quantum efficiency: Role of Duschinsky rotation
,”
J. Am. Chem. Soc.
129
(
30
),
9333
9339
(
2007
).
65.
Y.
Niu
,
Q.
Peng
, and
Z.
Shuai
, “
Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect
,”
Sci. China, Ser. B:Chem.
51
(
12
),
1153
1158
(
2008
).
66.
Z.
Shuai
, “
Thermal vibration correlation function formalism for molecular excited state decay rates
,”
Chin. J. Chem.
38
(
11
),
1223
1232
(
2020
).
67.
X.
Zhang
,
D.
Jacquemin
,
Q.
Peng
,
Z.
Shuai
, and
D.
Escudero
, “
General approach to compute phosphorescent OLED efficiency
,”
J. Phys. Chem. C
122
(
11
),
6340
6347
(
2018
).
68.
J. N.
Harvey
,
M.
Aschi
,
H.
Schwarz
, and
W.
Koch
, “
The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces
,”
Theor. Chem. Acc.
99
(
2
),
95
99
(
1998
).
69.
L.
Goerigk
and
S.
Grimme
, “
Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
7
(
2
),
291
309
(
2011
).
70.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
71.
A.
Yu Gitlina
,
F.
Fadaei-Tirani
,
A.
Ruggi
,
C.
Plaice
, and
K.
Severin
, “
Acid-base-induced fac → mer isomerization of luminescent iridium(III) complexes
,”
Chem. Sci.
13
(
35
),
10370
10374
(
2022
).
72.
G.
Skara
,
B.
Pinter
,
P.
Geerlings
, and
F.
De Proft
, “
Revealing the thermodynamic driving force for ligand-based reductions in quinoids; conceptual rules for designing redox active and non-innocent ligands
,”
Chem. Sci.
6
(
7
),
4109
4117
(
2015
).
73.
G.
Baryshnikov
,
B.
Minaev
, and
H.
Ågren
, “
Theory and calculation of the phosphorescence phenomenon
,”
Chem. Rev.
117
(
9
),
6500
6537
(
2017
).
74.
L.
Lv
,
K.
Liu
,
K.
Yuan
,
Y.
Zhu
, and
Y.
Wang
, “
Thermally activated delayed fluorescence processes for Cu(i) complexes in solid-state: A computational study using quantitative prediction
,”
RSC Adv.
8
(
50
),
28421
28432
(
2018
).
75.
D.
Escudero
,
B.
Happ
,
A.
Winter
,
M. D.
Hager
,
U. S.
Schubert
, and
L.
González
, “
The radiative decay rates tune the emissive properties of ruthenium(II) polypyridyl complexes: A computational study
,”
Chem. - Asian J.
7
(
4
),
667
671
(
2012
).
76.
T. J.
Penfold
,
E.
Gindensperger
,
C.
Daniel
, and
C. M.
Marian
, “
Spin-vibronic mechanism for intersystem crossing
,”
Chem. Rev.
118
(
15
),
6975
7025
(
2018
).
77.
Q.
Peng
,
Q.
Shi
,
Y.
Niu
,
Y.
Yi
,
S.
Sun
,
W.
Li
, and
Z.
Shuai
, “
Understanding the efficiency drooping of the deep blue organometallic phosphors: A computational study of radiative and non-radiative decay rates for triplets
,”
J. Mater. Chem. C
4
(
28
),
6829
6838
(
2016
).
78.
L.
Tang
,
J.
Gao
,
Y.
Luo
,
Y.
Cheng
,
L.
Liu
,
D.
Zheng
,
L.
Liang
,
J.
Hu
, and
T.
Luo
, “
Regulation of internal reorganization energy to change the non-radiative channel in the Ir(III) complex: The role of N atoms
,”
New J. Chem.
47
(
32
),
15076
15088
(
2023
).
79.
G.
Skara
,
M.
Gimferrer
,
F.
De Proft
,
P.
Salvador
, and
B.
Pinter
, “
Scrutinizing the noninnocence of quinone ligands in ruthenium complexes: Insights from structural, electronic, energy, and effective oxidation state analyses
,”
Inorg. Chem.
55
(
5
),
2185
2199
(
2016
).
80.
W. C.
Chen
,
P. T.
Chou
, and
Y. C.
Cheng
, “
Low internal reorganization energy of the metal-metal-to-ligand charge transfer emission in dimeric Pt(II) complexes
,”
J. Phys. Chem. C
123
(
16
),
10225
10236
(
2019
).
81.
J. V.
Caspar
and
T. J.
Meyer
, “
Application of the energy gap law to nonradiative, excited-state decay
,”
J. Phys. Chem.
87
(
6
),
952
957
(
1983
).
82.
I.
Soriano-Díaz
,
E.
Ortí
, and
A.
Giussani
, “
Predicting nonradiative decay rate constants of cyclometalated Ir(III) complexes
,”
Inorg. Chem.
63
(
36
),
16600
16604
(
2024
).
83.
Y.
Luo
,
L.
Tang
,
Z.
Chen
,
Z.
Xu
,
J.
Hu
, and
D.
Tang
, “
Theoretical investigation of the influence of heterocycles on the radiative and non-radiative decay processes of iridium(III) complexes
,”
New J. Chem.
47
(
17
),
8131
8138
(
2023
).
84.
X.
Zhou
and
B. J.
Powell
, “
Nonradiative decay and stability of N-heterocyclic carbene iridium(III) complexes
,”
Inorg. Chem.
57
(
15
),
8881
8889
(
2018
).
85.
X.
Zhou
and
B. J.
Powell
, “
Quantitative calculations of the non-radiative rate of phosphorescent Ir(III) complexes
,”
Phys. Chem. Chem. Phys.
22
(
46
),
27348
27356
(
2020
).
You do not currently have access to this content.