We present an algorithm that combines quantum scattering calculations with probabilistic machine-learning models to predict quantum dynamics rate coefficients for a large number of state-to-state transitions in molecule–molecule collisions much faster than with direct solutions of the Schrödinger equation. By utilizing the predictive power of Gaussian process regression with kernels, optimized to make accurate predictions outside of the input parameter space, the present strategy reduces the computational cost by about 75%, with an accuracy within 5%. Our method uses temperature dependences of rate coefficients for transitions from the isolated states of initial rotational angular momentum j, determined via explicit calculations, to predict the temperature dependences of rate coefficients for other values of j. The approach, demonstrated here for rovibrational transitions of SiO due to thermal collisions with H2, uses different prediction models and is thus adaptive to various time and accuracy requirements. The procedure outlined in this work can be used to extend multiple inelastic molecular collision databases without exponentially large computational resources required for conventional rigorous quantum dynamics calculations.

1.
S.
Green
and
P.
Thaddeus
, “
Rotational excitation of CO by collisions with He, H, and H2 under conditions in interstellar clouds
,”
Astrophys. J.
205
,
766
785
(
1976
).
2.
S.
Green
, “
Rotational excitation in H2–H2 collisions: Close-coupling calculations
,”
J. Chem. Phys.
62
,
2271
2277
(
1975
).
3.
N.
Balakrishnan
,
G.
Quéméner
,
R. C.
Forrey
,
R. J.
Hinde
, and
P. C.
Stancil
, “
Full-dimensional quantum dynamics calculations of H2–H2 collisions
,”
J. Chem. Phys.
134
,
014301
(
2011
).
4.
B.
Yang
,
P.
Zhang
,
C.
Qu
,
X. H.
Wang
,
P. C.
Stancil
,
J. M.
Bowman
,
N.
Balakrishnan
,
B. M.
McLaughlin
, and
R. C.
Forrey
, “
Full-dimensional quantum dynamics of SiO in collision with H2
,”
J. Phys. Chem. A
122
,
1511
1520
(
2018
).
5.
B.
Yang
,
P.
Zhang
,
X.
Wang
,
P. C.
Stancil
,
J. M.
Bowman
,
N.
Balakrishnan
, and
R. C.
Forrey
, “
Quantum dynamics of CO–H2 in full dimensionality
,”
Nat. Commun.
6
,
6629
(
2015
).
6.
B.
Yang
,
X. H.
Wang
,
P. C.
Stancil
,
J. M.
Bowman
,
N.
Balakrishnan
, and
R. C.
Forrey
, “
Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2
,”
J. Chem. Phys.
145
,
224307
(
2016
).
7.
B.
Yang
,
P. C.
Stancil
,
N.
Balakrishnan
, and
R. C.
Forrey
, “
Rotational quenching OF CO due to H2 collisions
,”
Astrophys. J.
718
,
1062
1069
(
2010
).
8.
B.
Yang
,
M.
Nagao
,
W.
Satomi
,
M.
Kimura
, and
P. C.
Stancil
, “
Rotational quenching of rotationally excited H2O in collisions with He
,”
Astrophys. J.
765
,
77
(
2013
).
9.
A.
Bohr
,
S.
Paolini
,
R. C.
Forrey
,
N.
Balakrishnan
, and
P. C.
Stancil
, “
A full-dimensional quantum dynamical study of H2 + H2 collisions: Coupled-states versus close-coupling formulation
,”
J. Chem. Phys.
140
,
064308
(
2014
).
10.
T. G.
Heil
,
S.
Green
, and
D. J.
Kouri
, “
The coupled states approximation for scattering of two diatoms
,”
J. Chem. Phys.
68
,
2562
2583
(
1978
).
11.
M. H.
Alexander
and
A. E.
DePristo
, “
Symmetry considerations in the quantum treatment of collisions between two diatomic molecules
,”
J. Chem. Phys.
66
,
2166
2172
(
1977
).
12.
R. C.
Forrey
,
B.
Yang
,
P.
Stancil
, and
N.
Balakrishnan
, “
Mutual vibrational quenching in CO+H2 collisions
,”
Chem. Phys.
462
,
71
78
(
2015
), a part of Special Issue: Inelastic Processes in Atomic, Molecular and Chemical Physics.
13.
T. J.
Price
,
R. C.
Forrey
,
B.
Yang
, and
P. C.
Stancil
, “
Fine-structure resolved rovibrational transitions for SO + H2 collisions
,”
J. Chem. Phys.
154
,
034301
(
2021
).
14.
H.
Burton
,
R.
Mysliwiec
,
R. C.
Forrey
,
B.
Yang
,
P.
Stancil
, and
N.
Balakrishnan
, “
Fine-structure resolved rotational transitions and database for CN+H2 collisions
,”
Mol. Astrophys.
11
,
23
32
(
2018
).
15.
C.
Castro
,
K.
Doan
,
M.
Klemka
,
R. C.
Forrey
,
B.
Yang
,
P. C.
Stancil
, and
N.
Balakrishnan
, “
Inelastic cross sections and rate coefficients for collisions between CO and H2
,”
Mol. Astrophys.
6
,
47
58
(
2017
).
16.
N.-N.
Ma
,
T.-L.
Zhao
,
W.-X.
Wang
, and
H.-F.
Zhang
, “
Simple deep-learning approach for α-decay half-life studies
,”
Phys. Rev. C
107
,
014310
(
2023
).
17.
G. P. A.
Nobre
,
D. A.
Brown
,
S. J.
Hollick
,
S.
Scoville
, and
P.
Rodríguez
, “
Novel machine-learning method for spin classification of neutron resonances
,”
Phys. Rev. C
107
,
034612
(
2023
).
18.
N.
Mallick
,
S.
Prasad
,
A. N.
Mishra
,
R.
Sahoo
, and
G. G.
Barnaföldi
, “
Deep learning predicted elliptic flow of identified particles in heavy-ion collisions at the RHIC and LHC energies
,”
Phys. Rev. D
107
,
094001
(
2023
).
19.
P.
Ilten
,
T.
Menzo
,
A.
Youssef
, and
J.
Zupan
, “
Modeling hadronization using machine learning
,”
SciPost Phys.
14
,
027
(
2023
).
20.
A.
Butter
,
T.
Plehn
,
S.
Schumann
,
S.
Badger
,
S.
Caron
,
K.
Cranmer
,
F. A.
Di Bello
,
E.
Dreyer
,
S.
Forte
,
S.
Ganguly
,
D.
Gonçalves
,
E.
Gross
,
T.
Heimel
,
G.
Heinrich
,
L.
Heinrich
,
A.
Held
,
S.
Höche
,
J. N.
Howard
,
P.
Ilten
,
J.
Isaacson
,
T.
Janßen
,
S.
Jones
,
M.
Kado
,
M.
Kagan
,
G.
Kasieczka
,
F.
Kling
,
S.
Kraml
,
C.
Krause
,
F.
Krauss
,
K.
Kröninger
,
R. K.
Barman
,
M.
Luchmann
,
V.
Magerya
,
D.
Maitre
,
B.
Malaescu
,
F.
Maltoni
,
T.
Martini
,
O.
Mattelaer
,
B.
Nachman
,
S.
Pitz
,
J.
Rojo
,
M.
Schwartz
,
D.
Shih
,
F.
Siegert
,
R.
Stegeman
,
B.
Stienen
,
J.
Thaler
,
R.
Verheyen
,
D.
Whiteson
,
R.
Winterhalder
, and
J.
Zupan
, “
Machine learning and LHC event generation
,”
SciPost Phys.
14
,
079
(
2023
).
21.
P.
Eller
,
A. T.
Fienberg
,
J.
Weldert
,
G.
Wendel
,
S.
Böser
, and
D.
Cowen
, “
A flexible event reconstruction based on machine learning and likelihood principles
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1048
,
168011
(
2023
).
22.
G.
Fang
,
S.
Ba
,
Y.
Gu
,
Z.
Lin
,
Y.
Hou
,
C.
Qin
,
C.
Zhou
,
J.
Xu
,
Y.
Dai
,
J.
Song
, and
X.
Kong
, “
Automatic classification of galaxy morphology: A rotationally-invariant supervised machine-learning method based on the unsupervised machine-learning data set
,”
Astron. J.
165
,
35
(
2023
).
23.
A.
Jasinski
,
J.
Montaner
,
R. C.
Forrey
,
B. H.
Yang
,
P. C.
Stancil
,
N.
Balakrishnan
,
J.
Dai
,
R. A.
Vargas-Hernández
, and
R. V.
Krems
, “
Machine learning corrected quantum dynamics calculations
,”
Phys. Rev. Res.
2
,
032051
(
2020
).
24.
M.
Lochner
,
L.
Rudnick
,
I.
Heywood
,
K.
Knowles
, and
S. S.
Shabala
, “
A unique, ring-like radio source with quadrilateral structure detected with machine learning
,”
Mon. Not. R. Astron. Soc.
520
,
1439
1446
(
2023
).
25.
P.
Lemos
,
M.
Cranmer
,
M.
Abidi
,
C.
Hahn
,
M.
Eickenberg
,
E.
Massara
,
D.
Yallup
, and
S.
Ho
, “
Robust simulation-based inference in cosmology with Bayesian neural networks
,”
Mach. Learn.: Sci. Technol.
4
,
01LT01
(
2023
).
26.
D.
de Andres
,
G.
Yepes
,
F.
Sembolini
,
G.
Martínez-Muñoz
,
W.
Cui
,
F.
Robledo
,
C.-H.
Chuang
, and
E.
Rasia
, “
Machine learning methods to estimate observational properties of galaxy clusters in large volume cosmological N-body simulations
,”
Mon. Not. R. Astron. Soc.
518
,
111
129
(
2022
).
27.
I.
Gómez-Vargas
,
J.
Briones Andrade
, and
J. A.
Vázquez
, “
Neural networks optimized by genetic algorithms in cosmology
,”
Phys. Rev. D
107
,
043509
(
2023
).
28.
H.
Moustafa
,
P. M.
Lyngby
,
J. J.
Mortensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Hundreds of new, stable, one-dimensional materials from a generative machine learning model
,”
Phys. Rev. Mater.
7
,
014007
(
2023
).
29.
S. S.
Rahaman
,
S.
Haldar
, and
M.
Kumar
, “
Machine learning approach to study quantum phase transitions of a frustrated one dimensional spin-1/2 system
,”
J. Phys.: Condens. Matter
35
,
115603
(
2023
).
30.
S.
Ciarella
,
M.
Chiappini
,
E.
Boattini
,
M.
Dijkstra
, and
L. M. C.
Janssen
, “
Dynamics of supercooled liquids from static averaged quantities using machine learning
,”
Mach. Learn.: Sci. Technol.
4
,
025010
(
2023
).
31.
D. M.
Anstine
and
O.
Isayev
, “
Machine learning interatomic potentials and long-range physics
,”
J. Phys. Chem. A
127
,
2417
2431
(
2023
).
32.
C.
Miles
,
R.
Samajdar
,
S.
Ebadi
,
T. T.
Wang
,
H.
Pichler
,
S.
Sachdev
,
M. D.
Lukin
,
M.
Greiner
,
K. Q.
Weinberger
, and
E.-A.
Kim
, “
Machine learning discovery of new phases in programmable quantum simulator snapshots
,”
Phys. Rev. Res.
5
,
013026
(
2023
).
33.
Y.-H.
Zhang
and
M.
Di Ventra
, “
Transformer quantum state: A multipurpose model for quantum many-body problems
,”
Phys. Rev. B
107
,
075147
(
2023
).
34.
D. K.
Duvenaud
,
H.
Nickisch
, and
C.
Rasmussen
, “
Additive Gaussian processes
,” in
Advances in Neural Information Processing Systems
, edited by
J.
Shawe-Taylor
,
R.
Zemel
,
P.
Bartlett
,
F.
Pereira
, and
K. Q.
Weinberger
(Curran Associates, Inc., 2011), Vol. 24, https://proceedings.neurips.cc/paper_files/paper/2011/file/4c5bde74a8f110656874902f07378009-Paper.pdf.
35.
D.
Duvenaud
,
J.
Lloyd
,
R.
Grosse
,
J.
Tenenbaum
, and
G.
Zoubin
, “
Structure discovery in nonparametric regression through compositional kernel search
,” in
Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June
, Proceedings of Machine Learning Research, edited by S. Dasgupta and D. McAllester (PMLR, 2013), Vol. 28, Issue 3, pp. 1166–1174, http://proceedings.mlr.press/v28/duvenaud13.pdf.
36.
J.
Dai
and
R. V.
Krems
, “
Quantum Gaussian process model of potential energy surface for a polyatomic molecule
,”
J. Chem. Phys.
156
,
184802
(
2022
).
37.
J.
Dai
and
R. V.
Krems
, “
Interpolation and extrapolation of global potential energy surfaces for polyatomic systems by Gaussian processes with composite kernels
,”
J. Chem. Theory Comput.
16
,
1386
1395
(
2020
).
38.
J.
Gao
,
J.
Wang
,
Z.
Xu
,
C.
Wang
, and
S.
Yan
, “
Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression
,”
Int. J. Fatigue
168
,
107361
(
2023
).
39.
H.
Sugisawa
,
T.
Ida
, and
R. V.
Krems
, “
Gaussian process model of 51-dimensional potential energy surface for protonated imidazole dimer
,”
J. Chem. Phys.
153
,
114101
(
2020
).
40.
D.
Poloni
,
D.
Oboe
,
C.
Sbarufatti
, and
M.
Giglio
, “
Towards a stochastic inverse finite element method: A Gaussian process strain extrapolation
,”
Mech. Syst. Signal Process.
189
,
110056
(
2023
).
41.
R. A.
Vargas-Hernández
,
J.
Sous
,
M.
Berciu
, and
R. V.
Krems
, “
Extrapolating quantum observables with machine learning: Inferring multiple phase transitions from properties of a single phase
,”
Phys. Rev. Lett.
121
,
255702
(
2018
).
42.
A. G.
Wilson
and
R. P.
Adams
, “
Gaussian process kernels for pattern discovery and extrapolation
,” in
Proceedings of the 30th International Conference on International Conference on Machine Learning—ICML’13
(
JMLR.org.
,
2013
), Vol.
28
, pp.
III-1067
III-1075
.
43.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
,
Adaptive Computation and Machine Learning
(
The MIT Press
,
2005
).
44.
A. G. d. G.
Matthews
,
M.
van der Wilk
,
T.
Nickson
,
K.
Fujii
,
A.
Boukouvalas
,
P.
León-Villagrá
,
Z.
Ghahramani
, and
J.
Hensman
, “
GPflow: A Gaussian process library using TensorFlow
,”
J. Mach. Learn. Res.
18
,
1
6
(
2017
).
45.
M.
van der Wilk
,
V.
Dutordoir
,
S.
John
,
A.
Artemev
,
V.
Adam
, and
J.
Hensman
, “
A framework for interdomain and multioutput Gaussian processes
,” arXiv:2003.01115 (
2020
).
You do not currently have access to this content.