Complex pathways in spontaneous molecular assemblies have been envisaged to be crucial factors in determining diverse outcomes desirable for materials design. Computer simulations can be instrumental in elucidating early stages of the assembly process, where direct experimental observations are difficult to obtain. In this paper, we report a computational study on the pathway complexities in aqueous mixtures of hydrophobic tripeptides that self-assemble into amorphous nanoscale objects. We introduce a new algorithmic approach for “complete accounting” of the simulation data in terms of rearrangements of spatial clusters spanning multiple length and time scales without relying on a priori assumptions. The salient features of an assembly mechanism were analyzed by focusing on four types of “events” encompassing all possible redistribution of molecules among interacting clusters. The event tracking analysis of the dynamics of spontaneous assemblies observed in fully atomistic molecular dynamics trajectories of tri-phenylalanine, tri-leucine, and tri-isoleucine revealed non-classical pathways with a clear trend in terms of spatio-temporal hierarchy. The discernible differences between latter two systems, where the building blocks are constitutional isomers, were particularly striking. Tri-phenylalanine assembled by a strongly hierarchical mechanism involving fusions of clusters of varying sizes. On the other hand, tri-isoleucine mostly followed a ripening type growth process, where isolated molecules or small molecular clusters attached to a single growing cluster. The tri-leucine exhibited an intermediate behavior with subtle differences from other two systems. These results underscored the effectiveness of our new analysis protocol in deciphering pathway complexities in molecular assemblies hitherto unreported in the literature.

1.
G. M.
Whitesides
and
B.
Grzybowski
, “
Self-assembly at all scales
,”
Science
295
,
2418
2421
(
2002
).
2.
G. M.
Whitesides
,
J. P.
Mathias
, and
C. T.
Seto
, “
Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures
,”
Science
254
,
1312
1319
(
1991
).
3.
P.
Makam
and
E.
Gazit
, “
Minimalistic peptide supramolecular co-assembly: Expanding the conformational space for nanotechnology
,”
Chem. Soc. Rev.
47
,
3406
3420
(
2018
).
4.
M. P.
Hendricks
,
K.
Sato
,
L. C.
Palmer
, and
S. I.
Stupp
, “
Supramolecular assembly of peptide amphiphiles
,”
Acc. Chem. Res.
50
,
2440
2448
(
2017
).
5.
T. F. A.
De Greef
,
M. M. J.
Smulders
,
M.
Wolffs
,
A. P. H. J.
Schenning
,
R. P.
Sijbesma
, and
E. W.
Meijer
, “
Supramolecular polymerization
,”
Chem. Rev.
109
,
5687
5754
(
2009
).
6.
S.
Whitelam
and
R. L.
Jack
, “
The statistical mechanics of dynamic pathways to self-assembly
,”
Annu. Rev. Phys. Chem.
66
,
143
163
(
2015
).
7.
P. G.
Vekilov
, “
The two-step mechanism of nucleation of crystals in solution
,”
Nanoscale
2
,
2346
2357
(
2010
).
8.
S.
Jungblut
and
C.
Dellago
, “
Pathways to self-organization: Crystallization via nucleation and growth
,”
Eur. Phys. J. E
39
,
77
(
2016
).
9.
J. J.
De Yoreo
, “
A holistic view of nucleation and self-assembly
,”
MRS Bull.
42
,
525
536
(
2017
).
10.
F.
Zhang
, “
Nonclassical nucleation pathways in protein crystallization
,”
J. Phys.: Condens. Matter
29
,
443002
(
2017
).
11.
P. C.
Ke
,
R.
Zhou
,
L. C.
Serpell
,
R.
Riek
,
T. P. J.
Knowles
,
H. A.
Lashuel
,
E.
Gazit
,
I. W.
Hamley
,
T. P.
Davis
,
M.
Fändrich
,
D. E.
Otzen
,
M. R.
Chapman
,
C. M.
Dobson
,
D. S.
Eisenberg
, and
R.
Mezzenga
, “
Half a century of amyloids: Past, present and future
,”
Chem. Soc. Rev.
49
,
5473
5509
(
2020
).
12.
J. E.
Straub
and
D.
Thirumalai
, “
Toward a molecular theory of early and late events in monomer to amyloid fibril formation
,”
Annu. Rev. Phys. Chem.
62
,
437
463
(
2011
).
13.
C. H.
Görbitz
, “
The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide
,”
Chem. Commun.
2006
(
22
),
2332
2334
.
14.
V.
Foderà
,
F.
Librizzi
,
M.
Groenning
,
M.
Van De Weert
, and
M.
Leone
, “
Secondary nucleation and accessible surface in insulin amyloid fibril formation
,”
J. Phys. Chem. B
112
,
3853
3858
(
2008
).
15.
T. P. J.
Knowles
,
C. A.
Waudby
,
G. L.
Devlin
,
S. I. A.
Cohen
,
A.
Aguzzi
,
M.
Vendruscolo
,
E. M.
Terentjev
,
M. E.
Welland
, and
C. M.
Dobson
, “
An analytical solution to the kinetics of breakable filament assembly
,”
Science
326
,
1533
1537
(
2009
).
16.
S. I. A.
Cohen
,
S.
Linse
,
L. M.
Luheshi
,
E.
Hellstrand
,
D. A.
White
,
L.
Rajah
,
D. E.
Otzen
,
M.
Vendruscolo
,
C. M.
Dobson
, and
T. P. J.
Knowles
, “
Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
9758
9763
(
2013
).
17.
M.
Törnquist
,
T. C. T.
Michaels
,
K.
Sanagavarapu
,
X.
Yang
,
G.
Meisl
,
S. I. A.
Cohen
,
T. P. J.
Knowles
, and
S.
Linse
, “
Secondary nucleation in amyloid formation
,”
Chem. Commun.
54
,
8667
8684
(
2018
).
18.
S.
Malik
,
S. K.
Maji
,
A.
Banerjee
, and
A. K.
Nandi
, “
A synthetic tripeptide as organogelator: Elucidation of gelation mechanism
,”
J. Chem. Soc., Perkin Trans.
2
,
1177
1186
(
2002
).
19.
M.
Reches
and
E.
Gazit
, “
Molecular self-assembly of peptide nanostructures: Mechanism of association and potential uses
,”
Curr. Nanosci.
2
,
105
111
(
2006
).
20.
C.
Guo
,
Z. A.
Arnon
,
R.
Qi
,
Q.
Zhang
,
L.
Adler-Abramovich
,
E.
Gazit
, and
G.
Wei
, “
Expanding the nanoarchitectural diversity through aromatic Di- and Tri-peptide coassembly: Nanostructures and molecular mechanisms
,”
ACS Nano
10
,
8316
8324
(
2016
).
21.
J.
Wang
,
K.
Liu
,
R.
Xing
, and
X.
Yan
, “
Peptide self-assembly: Thermodynamics and kinetics
,”
Chem. Soc. Rev.
45
,
5589
5604
(
2016
).
22.
A.
Lakshmanan
,
D. W.
Cheong
,
A.
Accardo
,
E.
Di Fabrizio
,
C.
Riekel
, and
C. A. E.
Hauser
, “
Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
519
524
(
2013
).
23.
Z. A.
Arnon
,
A.
Vitalis
,
A.
Levin
,
T. C. T.
Michaels
,
A.
Caflisch
,
T. P. J.
Knowles
,
L.
Adler-Abramovich
, and
E.
Gazit
, “
Dynamic microfluidic control of supramolecular peptide self-assembly
,”
Nat. Commun.
7
,
13190
(
2016
).
24.
T. O.
Mason
,
T. C. T.
Michaels
,
A.
Levin
,
E.
Gazit
,
C. M.
Dobson
,
A. K.
Buell
, and
T. P. J.
Knowles
, “
Synthesis of nonequilibrium supramolecular peptide polymers on a microfluidic platform
,”
J. Am. Chem. Soc.
138
,
9589
9596
(
2016
).
25.
P. A.
Korevaar
,
S. J.
George
,
A. J.
Markvoort
,
M. M. J.
Smulders
,
P. A. J.
Hilbers
,
A. P. H. J.
Schenning
,
T. F. A.
De Greef
, and
E. W.
Meijer
, “
Pathway complexity in supramolecular polymerization
,”
Nature
481
,
492
496
(
2012
).
26.
P.
Jonkheijm
,
P.
van der Schoot
,
A. P. H. J.
Schenning
, and
E. W.
Meijer
, “
Probing the solvent-assisted nucleation pathway in chemical self-assembly
,”
Science
313
,
80
83
(
2006
).
27.
P.
Khanra
,
A. K.
Singh
,
L.
Roy
, and
A.
Das
, “
Pathway complexity in supramolecular copolymerization and blocky star copolymers by a Hetero-Seeding effect
,”
J. Am. Chem. Soc.
145
,
5270
5284
(
2023
).
28.
R.
Laishram
,
S.
Sarkar
,
I.
Seth
,
N.
Khatun
,
V. K.
Aswal
,
U.
Maitra
, and
S. J.
George
, “
Secondary nucleation-triggered physical cross-links and tunable stiffness in seeded supramolecular hydrogels
,”
J. Am. Chem. Soc.
144
,
11306
11315
(
2022
).
29.
S.
Datta
,
Y.
Kato
,
S.
Higashiharaguchi
,
K.
Aratsu
,
A.
Isobe
,
T.
Saito
,
D. D.
Prabhu
,
Y.
Kitamoto
,
M. J.
Hollamby
,
A. J.
Smith
,
R.
Dalgliesh
,
N.
Mahmoudi
,
L.
Pesce
,
C.
Perego
,
G. M.
Pavan
, and
S.
Yagai
, “
Self-assembled poly-catenanes from supramolecular toroidal building blocks
,”
Nature
583
,
400
405
(
2020
).
30.
N.
Sasaki
,
M. F. J.
Mabesoone
,
J.
Kikkawa
,
T.
Fukui
,
N.
Shioya
,
T.
Shimoaka
,
T.
Hasegawa
,
H.
Takagi
,
R.
Haruki
,
N.
Shimizu
,
S.-i.
Adachi
,
E. W.
Meijer
,
M.
Takeuchi
, and
K.
Sugiyasu
, “
Supramolecular double-stranded Archimedean spirals and concentric toroids
,”
Nat. Commun.
11
,
3578
3579
(
2020
).
31.
S.
Sarkar
,
A.
Sarkar
,
A.
Som
,
S. S.
Agasti
, and
S. J.
George
, “
Stereoselective primary and secondary nucleation events in multicomponent seeded supramolecular polymerization
,”
J. Am. Chem. Soc.
143
,
11777
11787
(
2021
).
32.
A.
Osypenko
,
E.
Moulin
,
O.
Gavat
,
G.
Fuks
,
M.
Maaloum
,
M. A. J.
Koenis
,
W. J.
Buma
, and
N.
Giuseppone
, “
Temperature control of sequential nucleation–growth mechanisms in hierarchical supramolecular polymers
,”
Chem.—Eur. J.
25
,
13008
13016
(
2019
).
33.
A.
Kumar
and
V.
Molinero
, “
Two-step to one-step nucleation of a zeolite through a metastable gyroid mesophase
,”
J. Phys. Chem. Lett.
9
,
5692
5697
(
2018
).
34.
D.
Gebauer
and
H.
Cölfen
, “
Prenucleation clusters and non-classical nucleation
,”
Nano Today
6
,
564
584
(
2011
).
35.
D.
Gebauer
,
M.
Kellermeier
,
J. D.
Gale
,
L.
Bergström
, and
H.
Cölfen
, “
Pre-nucleation clusters as solute precursors in crystallisation
,”
Chem. Soc. Rev.
43
,
2348
2371
(
2014
).
36.
D.
Erdemir
,
A. Y.
Lee
, and
A. S.
Myerson
, “
Nucleation of crystals from solution: Classical and two-step models
,”
Acc. Chem. Res.
42
,
621
629
(
2009
).
37.
E.
Schneider
,
L.
Vogt
, and
M. E.
Tuckerman
, “
Exploring polymorphism of benzene and naphthalene with free energy based enhanced molecular dynamics
,”
Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater.
72
,
542
550
(
2016
).
38.
P.
Verwer
and
F. J. J.
Leusen
, “
Computer simulation to predict possible crystal polymorphs
,”
Rev. Comput. Chem.
12
,
327
365
(
1998
).
39.
M.
Crippa
,
C.
Perego
,
A. L.
de Marco
, and
G. M.
Pavan
, “
Molecular communications in complex systems of dynamic supramolecular polymers
,”
Nat. Commun.
13
,
2162
(
2022
).
40.
M.
Becchi
,
F.
Fantolino
, and
G. M.
Pavan
, “
Layer-by-layer unsupervised clustering of statistically relevant fluctuations in noisy time-series data of complex dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2403771121
(
2024
).
41.
C.
Caruso
,
A.
Cardellini
,
M.
Crippa
,
D.
Rapetti
, and
G. M.
Pavan
, “
Timesoap: Tracking high-dimensional fluctuations in complex molecular systems via time variations of soap spectra
,”
J. Chem. Phys.
158
,
214302
(
2023
).
42.
C.
Caruso
,
M.
Crippa
,
A.
Cardellini
,
M.
Cioni
,
M.
Perrone
,
M.
Delle Piane
, and
G. M.
Pavan
, “
Classification and spatiotemporal correlation of dominant fluctuations in complex dynamical systems
,”
PNAS Nexus
4
,
pgaf038
(
2025
).
43.
P.
Gasparotto
,
D.
Bochicchio
,
M.
Ceriotti
, and
G. M.
Pavan
, “
Identifying and tracking defects in dynamic supramolecular polymers
,”
J. Phys. Chem. B
124
,
589
599
(
2019
).
44.
C. S.
Adorf
,
T. C.
Moore
,
Y. J. U.
Melle
, and
S. C.
Glotzer
, “
Analysis of self-assembly pathways with unsupervised machine learning algorithms
,”
J. Phys. Chem. B
124
,
69
78
(
2019
).
45.
W. C.
Swope
and
H. C.
Andersen
, “
106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid
,”
Phys. Rev. B
41
,
7042
(
1990
).
46.
S.
Auer
and
D.
Frenkel
, “
Numerical simulation of crystal nucleation in colloids
,” in
Advanced Computer Simulation: Approaches for Soft Matter Sciences I
, edited by
C.
Holm
and
K.
Kremer
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2005
), pp.
149
208
.
47.
C. J.
Fullerton
and
R. L.
Jack
, “
Optimising self-assembly through time-dependent interactions
,”
J. Chem. Phys.
145
,
244505
(
2016
).
48.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci.
99
,
7821
7826
(
2002
).
49.
S.
Fortunato
, “
Community detection in graphs
,”
Phys. Rep.
486
,
75
174
(
2010
).
50.
S.
Fortunato
and
M. E. J.
Newman
, “
20 years of network community detection
,”
Nat. Phys.
18
,
848
850
(
2022
).
51.
D.
Gfeller
,
P.
De Los Rios
,
A.
Caflisch
, and
F.
Rao
, “
Complex network analysis of free-energy landscapes
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
1817
1822
(
2007
).
52.
G.
Berezovska
,
D.
Prada-Gracia
,
S.
Mostarda
, and
F.
Rao
, “
Accounting for the kinetics in order parameter analysis: Lessons from theoretical models and a disordered peptide
,”
J. Chem. Phys.
137
,
194101
(
2012
).
53.
R.
Shevchuk
, “
Markov state model of ion assembling process
,”
J. Phys. Chem. A
120
,
2783
2788
(
2016
).
54.
N.
Zarayeneh
,
N.
Kumar
,
A.
Kalyanaraman
, and
A. E.
Clark
, “
Dynamic community detection decouples multiple time scale behavior of complex chemical systems
,”
J. Chem. Theory Comput.
18
,
7043
7051
(
2022
).
55.
M.
Crippa
,
A.
Cardellini
,
C.
Caruso
, and
G. M.
Pavan
, “
Detecting dynamic domains and local fluctuations in complex molecular systems via timelapse neighbors shuffling
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2300565120
(
2023
).
56.
M.
Jorge
, “
Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles
,”
Langmuir
24
,
5714
5725
(
2008
).
57.
M.
Orsi
, “
Molecular simulation of self-assembly
,” in
Self-assembling Biomaterials
(
Elsevier
,
2018
), pp.
305
318
.
58.
O.-S.
Lee
,
S. I.
Stupp
, and
G. C.
Schatz
, “
Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers
,”
J. Am. Chem. Soc.
133
,
3677
3683
(
2011
).
59.
P. W. J. M.
Frederix
,
R. V.
Ulijn
,
N. T.
Hunt
, and
T.
Tuttle
, “
Virtual screening for dipeptide aggregation: Toward predictive tools for peptide self-assembly
,”
J. Phys. Chem. Lett.
2
,
2380
2384
(
2011
).
60.
P. W. J. M.
Frederix
,
G. G.
Scott
,
Y. M.
Abul-Haija
,
D.
Kalafatovic
,
C. G.
Pappas
,
N.
Javid
,
N. T.
Hunt
,
R. V.
Ulijn
, and
T.
Tuttle
, “
Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels
,”
Nat. Chem.
7
,
30
37
(
2015
).
61.
I.
Azuri
,
L.
Adler-Abramovich
,
E.
Gazit
,
O.
Hod
, and
L.
Kronik
, “
Why are diphenylalanine-based peptide nanostructures so rigid? Insights from first principles calculations
,”
J. Am. Chem. Soc.
136
,
963
969
(
2014
).
62.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
,
7078
7116
(
2016
).
63.
M.
Zhao
,
J.
Sampath
,
S.
Alamdari
,
G.
Shen
,
C.-L.
Chen
,
C. J.
Mundy
,
J.
Pfaendtner
, and
A. L.
Ferguson
, “
Martini-compatible coarse-grained model for the mesoscale simulation of peptoids
,”
J. Phys. Chem. B
124
,
7745
7764
(
2020
).
64.
R.
Adhikary
and
A.
Das
, “
Atomistic pictures of self-assembled helical peptide nanofibers
,”
J. Phys. Chem. B
126
,
9476
9492
(
2022
).
65.
S.
Gnanakaran
,
R.
Nussinov
, and
A. E.
García
, “
Atomic-level description of amyloid β-dimer formation
,”
J. Am. Chem. Soc.
128
,
2158
2159
(
2006
).
66.
G.
Bellesia
and
J.-E.
Shea
, “
Self-assembly of β-sheet forming peptides into chiral fibrillar aggregates
,”
J. Chem. Phys.
126
,
245104
(
2007
).
67.
M. G.
Krone
,
L.
Hua
,
P.
Soto
,
R.
Zhou
,
B. J.
Berne
, and
J.-E.
Shea
, “
Role of water in mediating the assembly of alzheimer amyloid-β Aβ16–22 protofilaments
,”
J. Am. Chem. Soc.
130
,
11066
11072
(
2008
).
68.
Y. S.
Velichko
,
S. I.
Stupp
, and
M. O.
De La Cruz
, “
Molecular simulation study of peptide amphiphile self-assembly
,”
J. Phys. Chem. B
112
,
2326
2334
(
2008
).
69.
A.
Manandhar
,
M.
Kang
,
K.
Chakraborty
,
P. K.
Tang
, and
S. M.
Loverde
, “
Molecular simulations of peptide amphiphiles
,”
Org. Biomol. Chem.
15
,
7993
8005
(
2017
).
70.
C.
Yuan
,
S.
Li
,
Q.
Zou
,
Y.
Ren
, and
X.
Yan
, “
Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly
,”
Phys. Chem. Chem. Phys.
19
,
23614
23631
(
2017
).
71.
C.
Guo
,
Y.
Luo
,
R.
Zhou
, and
G.
Wei
, “
Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes
,”
ACS Nano
6
,
3907
3918
(
2012
).
72.
J.
Jeon
,
C. E.
Mills
, and
M. S.
Shell
, “
Molecular insights into diphenylalanine nanotube assembly: All-atom simulations of oligomerization
,”
J. Phys. Chem. B
117
,
3935
3943
(
2013
).
73.
A. N.
Rissanou
,
E.
Georgilis
,
E.
Kasotakis
,
A.
Mitraki
, and
V.
Harmandaris
, “
Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides
,”
J. Phys. Chem. B
117
,
3962
3975
(
2013
).
74.
P. W. J. M.
Frederix
,
I.
Patmanidis
, and
S. J.
Marrink
, “
Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments
,”
Chem. Soc. Rev.
47
,
3470
3489
(
2018
).
75.
P.
Zhou
,
L.
Deng
,
Y.
Wang
,
J. R.
Lu
, and
H.
Xu
, “
Interplay between intrinsic conformational propensities and intermolecular interactions in the self-assembly of short surfactant-like peptides composed of leucine/isoleucine
,”
Langmuir
32
,
4662
4672
(
2016
).
76.
N.
Cao
,
K.
Huang
,
J.
Xie
,
H.
Wang
, and
X.
Shi
, “
Self-assembly of peptides: The acceleration by molecular dynamics simulations and machine learning
,”
Nano Today
55
,
102160
(
2024
).
77.
D.
Bochicchio
and
G. M.
Pavan
, “
From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations
,”
ACS Nano
11
,
1000
1011
(
2017
).
78.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E. M.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
MacKerell
, Jr.
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles
,”
J. Chem. Theory Comput.
8
,
3257
3273
(
2012
).
79.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
80.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
Mdanalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
81.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
82.
D. M.
Rampulla
,
N.
Oncel
,
S. A.
Malcolm
, and
S. L.
Bernasek
, “
Higher-order complexity through r-group effects in self-assembled tripeptide monolayers
,”
Langmuir
26
,
16287
16290
(
2010
).
83.
E.
Mayans
,
J.
Casanovas
,
A. M.
Gil
,
A. I.
Jiménez
,
C.
Cativiela
,
J.
Puiggalí
, and
C.
Alemán
, “
Diversity and hierarchy in supramolecular assemblies of triphenylalanine: From laminated helical ribbons to toroids
,”
Langmuir
33
,
4036
4048
(
2017
).
84.
S.
Das
,
R.
Adhikary
,
S.
Bagchi
,
A.
Chakraborty
, and
A.
Das
, “
Correlating molecular structure and self-assembly mechanism via Temporal Analysis of Multidimensional Chemical Interactions Space: Application to assemblies of isomeric peptides
,”
Phys. Chem. Chem. Phys.
(to be published) (
2025
).
You do not currently have access to this content.