Poly(N-isopropylacrylamide) (pNIPAM) microgels exhibit a reversible thermoresponsive behavior, undergoing a volume phase transition. This property makes pNIPAM microgels highly appealing for diverse applications, including drug delivery, tissue engineering, and sensors, where temperature-triggered changes in size, charge, and mechanical properties are advantageous. However, a plethora of data available in the literature regarding the relationship between the crosslinking density and the above-mentioned properties of pNIPAM microgels necessitates a consolidation and re-examination. This study aims to address two key objectives: (1) elucidate the relationship between the crosslinking density and size/electrophoretic mobility of pNIPAM microgels, building upon existing knowledge, and (2) examine the influence of crosslinking density on transition temperatures, particularly the electrokinetic transition temperature, which is not well explored and understood. To achieve these objectives, we synthesized 20 batches of pNIPAM microgels using two distinct synthesis routes: 18 batches via conventional one-pot synthesis, with triplicate replicates for six crosslinking densities, and two batches of pNIPAM microgels via semi-batch synthesis, with a duplicate replicate for one crosslinking density. These microgels were characterized using a combination of dynamic light scattering to determine the size and thermoresponsive behavior, electrophoretic light scattering to analyze electrophoretic mobility, and atomic force microscopy to evaluate the structural morphology and assess stiffness. The insights from the characterization techniques enhance our understanding of how the crosslinking density influences the physical and electrokinetic properties of pNIPAM microgels, potentially creating a pathway for rational design of microgels tailored for specific applications.

1.
I.
Deike
,
M.
Ballauff
,
N.
Willenbacher
, and
A.
Weiss
, “
Rheology of thermosensitive latex particles including the high-frequency limit
,”
J. Rheol.
45
,
709
720
(
2001
).
2.
J. J.
Crassous
,
M.
Siebenbürger
,
M.
Ballauff
,
M.
Drechsler
,
O.
Henrich
, and
M.
Fuchs
, “
Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions
,”
J. Chem. Phys.
125
,
204906
(
2006
).
3.
H.
Senff
,
W.
Richtering
,
C.
Norhausen
,
A.
Weiss
, and
M.
Ballauff
, “
Rheology of a temperature sensitive core–shell latex
,”
Langmuir
15
,
102
106
(
1999
).
4.
M.
Heskins
and
J. E.
Guillet
, “
Solution properties of poly(N-isopropylacrylamide)
,”
J. Macromol. Sci., Part A
2
,
1441
1455
(
1968
).
5.
H.
Kim
,
K.
Kim
, and
S. J.
Lee
, “
Nature-inspired thermo-responsive multifunctional membrane adaptively hybridized with PNIPAm and PPy
,”
NPG Asia Mater.
9
,
e445
(
2017
).
6.
K.
Jain
,
R.
Vedarajan
,
M.
Watanabe
,
M.
Ishikiriyama
, and
N.
Matsumi
, “
Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers
,”
Polym. Chem.
6
,
6819
6825
(
2015
).
7.
I.
Bischofberger
and
V.
Trappe
, “
New aspects in the phase behaviour of poly-N-isopropyl acrylamide: Systematic temperature dependent shrinking of PNiPAM assemblies well beyond the LCST
,”
Sci. Rep.
5
,
15520
(
2015
).
8.
H.
Kawaguchi
, “
On going to a new era of microgel exhibiting volume phase transition
,”
Gels
6
,
26
(
2020
).
9.
T.
Hellweg
, “
Properties of nipam-based intelligent microgel particles: Investigated using scattering methods
,” in
Nanoscale Materials
(
Springer
,
2003
), pp.
209
225
.
10.
V. J.
Jijo
,
K. P.
Sharma
,
R.
Mathew
,
S.
Kamble
,
P. R.
Rajamohanan
,
T. G.
Ajithkumar
,
M. V.
Badiger
, and
G.
Kumaraswamy
, “
Volume transition of pnipam in a nonionic surfactant hexagonal mesophase
,”
Macromolecules
43
,
4782
4790
(
2010
).
11.
R.
Pelton
, “
Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic
,”
J. Colloid Interface Sci.
348
,
673
674
(
2010
).
12.
B. R.
Saunders
and
B.
Vincent
, “
Microgel particles as model colloids: Theory, properties and applications
,”
Adv. Colloid Interface Sci.
80
,
1
25
(
1999
).
13.
S.
Nayak
and
L. A.
Lyon
, “
Soft nanotechnology with soft nanoparticles
,”
Angew. Chem., Int. Ed.
44
,
7686
7708
(
2005
).
14.
T.
Hoare
and
R.
Pelton
, “
Characterizing charge and crosslinker distributions in polyelectrolyte microgels
,”
Curr. Opin. Colloid Interface Sci.
13
,
413
428
(
2008
).
15.
S.
Bochenek
,
F.
Camerin
,
E.
Zaccarelli
,
A.
Maestro
,
M. M.
Schmidt
,
W.
Richtering
, and
A.
Scotti
, “
In-situ study of the impact of temperature and architecture on the interfacial structure of microgels
,”
Nat. Commun.
13
,
3744
(
2022
).
16.
J.
Vialetto
,
S. N.
Ramakrishna
,
L.
Isa
, and
M.
Laurati
, “
Effect of particle stiffness and surface properties on the non-linear viscoelasticity of dense microgel suspensions
,”
J. Colloid Interface Sci.
672
,
814
823
(
2024
).
17.
G.
Chaudhary
,
A.
Ghosh
,
J. G.
Kang
,
P. V.
Braun
,
R. H.
Ewoldt
, and
K. S.
Schweizer
, “
Linear and nonlinear viscoelasticity of concentrated thermoresponsive microgel suspensions
,”
J. Colloid Interface Sci.
601
,
886
898
(
2021
).
18.
G.
Li
,
I.
Varga
,
A.
Kardos
,
I.
Dobryden
, and
P. M.
Claesson
, “
Temperature-dependent nanomechanical properties of adsorbed poly-nipam microgel particles immersed in water
,”
Langmuir
37
,
1902
1912
(
2021
).
19.
E.
Daly
and
B. R.
Saunders
, “
Temperature–dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: Structural insights
,”
Phys. Chem. Chem. Phys.
2
,
3187
3193
(
2000
).
20.
S.
Sennato
,
E.
Chauveau
,
S.
Casciardi
,
F.
Bordi
, and
D.
Truzzolillo
, “
The double-faced electrostatic behavior of PNIPAm microgels
,”
Polymers
13
,
1153
(
2021
).
21.
G.
Del Monte
,
D.
Truzzolillo
,
F.
Camerin
,
A.
Ninarello
,
E.
Chauveau
,
L.
Tavagnacco
,
N.
Gnan
,
L.
Rovigatti
,
S.
Sennato
, and
E.
Zaccarelli
, “
Two-step deswelling in the volume phase transition of thermoresponsive microgels
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2109560118
(
2021
).
22.
B. R.
Saunders
,
N.
Laajam
,
E.
Daly
,
S.
Teow
,
X.
Hu
, and
R.
Stepto
, “
Microgels: From responsive polymer colloids to biomaterials
,”
Adv. Colloid Interface Sci.
147-148
,
251
262
(
2009
).
23.
R.
Pelton
, “
Temperature-sensitive aqueous microgels
,”
Adv. Colloid Interface Sci.
85
,
1
33
(
2000
).
24.
D.
Truzzolillo
,
S.
Sennato
,
S.
Sarti
,
S.
Casciardi
,
C.
Bazzoni
, and
F.
Bordi
, “
Overcharging and reentrant condensation of thermoresponsive ionic microgels
,”
Soft Matter
14
,
4110
4125
(
2018
).
25.
S.
Vintha
,
R.
Datta
, and
B. V. R.
Tata
, “
Phase transitions in dense thermo-responsive microgel suspensions: A Monte Carlo study
,”
AIP Conf. Proc.
2269
,
030010
(
2020
).
26.
B. R.
Saunders
, “
On the structure of poly(N-isopropylacrylamide) microgel particles
,”
Langmuir
20
,
3925
3932
(
2004
).
27.
M.
Shibayama
,
T.
Tanaka
, and
C. C.
Han
, “
Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition temperature
,”
J. Chem. Phys.
97
,
6829
6841
(
1992
).
28.
S.
Bandyopadhyay
,
A.
Sharma
,
M. A.
Ashfaq Alvi
,
R.
Raju
, and
W. R.
Glomm
, “
A robust method to calculate the volume phase transition temperature (VPTT) for hydrogels and hybrids
,”
RSC Adv.
7
,
53192
53202
(
2017
).
29.
R.
Keidel
,
A.
Ghavami
,
D. M.
Lugo
,
G.
Lotze
,
O.
Virtanen
,
P.
Beumers
,
J. S.
Pedersen
,
A.
Bardow
,
R. G.
Winkler
, and
W.
Richtering
, “
Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition
,”
Sci. Adv.
4
,
7086
(
2018
).
30.
W. O.
Baker
, “
Microgel, a new macromolecule
,”
Ind. Eng. Chem.
41
,
511
520
(
1949
).
31.
D.
Vlassopoulos
and
M.
Cloitre
, “
Tunable rheology of dense soft deformable colloids
,”
Curr. Opin. Colloid Interface Sci.
19
,
561
574
(
2014
).
32.
J. R.
Stokes
and
W. J.
Frith
, “
Rheology of gelling and yielding soft matter systems
,”
Soft Matter
4
,
1133
1140
(
2008
).
33.
D. T. N.
Chen
,
Q.
Wen
,
P. A.
Janmey
,
J. C.
Crocker
, and
A. G.
Yodh
, “
Rheology of soft materials
,”
Annu. Rev. Condens. Matter Phys.
1
,
301
322
(
2010
).
34.
R. T.
Bonnecaze
and
M.
Cloitre
, “
Micromechanics of soft particle glasses
,” in
High Solid Dispersions
(
Springer
,
2010
), pp.
117
161
.
35.
D.
Vlassopoulos
and
G.
Fytas
,
From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles
(
Springer
,
2010
), pp.
1
54
.
36.
M.
Karg
,
A.
Pich
,
T.
Hellweg
,
T.
Hoare
,
L. A.
Lyon
,
J. J.
Crassous
,
D.
Suzuki
,
R. A.
Gumerov
,
S.
Schneider
,
I. I.
Potemkin
, and
W.
Richtering
, “
Nanogels and microgels: From model colloids to applications, recent developments, and future trends
,”
Langmuir
35
,
6231
6255
(
2019
).
37.
J.
Brijitta
,
B. V. R.
Tata
, and
T.
Kaliyappan
, “
Phase behavior of poly(N-isopropylacrylamide) nanogel dispersions: Temperature dependent particle size and interactions
,”
J. Nanosci. Nanotechnol.
9
,
5323
5328
(
2009
).
38.
M.
Islam
,
A.
Ahiabu
,
X.
Li
, and
M.
Serpe
, “
Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing
,”
Sensors
14
,
8984
8995
(
2014
).
39.
N.
Hauck
,
T.
Beck
,
G.
Cojoc
,
R.
Schlüßler
,
S.
Ahmed
,
I.
Raguzin
,
M.
Mayer
,
J.
Schubert
,
P.
Müller
,
J.
Guck
, and
J.
Thiele
, “
Pnipaam microgels with defined network architecture as temperature sensors in optical stretchers
,”
Mater. Adv.
3
,
6179
6190
(
2022
).
40.
Y.
Guan
and
Y.
Zhang
, “
Pnipam microgels for biomedical applications: From dispersed particles to 3d assemblies
,”
Soft Matter
7
,
6375
6384
(
2011
).
41.
I.
Sanzari
,
E.
Buratti
,
R.
Huang
,
C. G.
Tusan
,
F.
Dinelli
,
N. D.
Evans
,
T.
Prodromakis
, and
M.
Bertoldo
, “
Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications
,”
Sci. Rep.
10
,
6126
(
2020
).
42.
S.
Franco
,
E.
Buratti
,
V.
Nigro
,
M.
Bertoldo
,
B.
Ruzicka
, and
R.
Angelini
, “
Thermal behaviour of microgels composed of interpenetrating polymer networks of poly(N-isopropylacrylamide) and poly(acrylic acid): A calorimetric study
,”
Polymers
14
,
115
(
2021
).
43.
D.
Karthickeyan
,
D. K.
Gupta
, and
B. V. R.
Tata
, “
Identification of volume phase transition of a single microgel particle using optical tweezers
,”
J. Opt.
18
,
105401
(
2016
).
44.
Y.
Zhu
,
J.
Hou
,
D. M.
Gray
,
T. O.
McDonald
, and
A. G.
Dumanli
, “
Cation-induced morphological transitions and aggregation of thermoresponsive PNIPAM nanogels
,”
Heliyon
10
,
e32184
(
2024
).
45.
M. V.
Saisavadas
,
S.
Dhara
,
R. G.
Joshi
, and
B. V. R.
Tata
, “
Large amplitude oscillatory shear studies on dense PNIPAM microgel colloidal glasses
,”
Colloid Polym. Sci.
301
,
599
611
(
2023
).
46.
P.
Fievet
,
A.
Szymczyk
,
C.
Labbez
,
B.
Aoubiza
,
C.
Simon
,
A.
Foissy
, and
J.
Pagetti
, “
Determining the zeta potential of porous membranes using electrolyte conductivity inside pores
,”
J. Colloid Interface Sci.
235
,
383
390
(
2001
).
47.
H.
Kobayashi
and
R.
Winkler
, “
Structure of microgels with Debye–Hückel interactions
,”
Polymers
6
,
1602
1617
(
2014
).
48.
R. H.
Pelton
and
P.
Chibante
, “
Preparation of aqueous latices with N-isopropylacrylamide
,”
Colloids Surf.
20
,
247
256
(
1986
).
49.
X.
Wu
,
R. H.
Pelton
,
A. E.
Hamielec
,
D. R.
Woods
, and
W.
McPhee
, “
The kinetics of poly(N-isopropylacrylamide) microgel latex formation
,”
Colloid Polym. Sci.
272
,
467
477
(
1994
).
50.
M.
Braibanti
,
C.
Haro-Pérez
,
M.
Quesada-Pérez
,
L. F.
Rojas-Ochoa
, and
V.
Trappe
, “
Impact of volume transition on the net charge of poly-N-isopropyl acrylamide microgels
,”
Phys. Rev. E
94
,
032601
(
2016
).
51.
C. L.
McCormick
,
T.
Nonaka
, and
C. B.
Johnson
, “
Water-soluble copolymers: 27. Synthesis and aqueous solution behaviour of associative acrylamiden-alkylacrylamide copolymers
,”
Polymer
29
,
731
739
(
1988
).
52.
Q.
Yan
and
A. S.
Hoffman
, “
Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules
,”
Polymer
36
,
887
889
(
1995
).
53.
S.
Majumder
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Soft colloidal monolayers with reflection symmetry through confined drying
,”
Nanoscale Adv.
6
,
4907
4921
(
2024
).
54.
K.
Kratz
and
W.
Eimer
, “
Swelling properties of colloidal poly(N‐Isopropylacrylamide) microgels in solution
,”
Ber. Bunsen-Ges. Phys. Chem.
102
,
848
854
(
1998
).
55.
B. R.
Saunders
and
B.
Vincent
, “
Thermal and osmotic deswelling of poly(NIPAM) microgel particles
,”
J. Chem. Soc., Faraday Trans.
92
,
3385
3389
(
1996
).
56.
T.
Still
,
K.
Chen
,
A. M.
Alsayed
,
K. B.
Aptowicz
, and
A. g.
Yodh
, “
Synthesis of micrometer-size poly(N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control
,”
J. Colloid Interface Sci.
405
,
96
102
(
2013
).
57.
B.
Wedel
,
T.
Brändel
,
J.
Bookhold
, and
T.
Hellweg
, “
Role of anionic surfactants in the synthesis of smart microgels based on different acrylamides
,”
ACS Omega
2
,
84
90
(
2017
).
58.
M.
Rey
,
X.
Hou
,
J. S. J.
Tang
, and
N.
Vogel
, “
Interfacial arrangement and phase transitions of PNIPAM microgels with different crosslinking densities
,”
Soft Matter
13
,
8717
8727
(
2017
).
59.
E.
Buratti
,
F.
Camerin
,
V.
Nigro
,
S.
Franco
,
J.
Ruiz-Franco
,
L.
Porcar
,
R.
Angelini
,
B.
Ruzicka
,
Y.
Gerelli
, and
E.
Zaccarelli
, “
Fine-tuning the architecture of microgels by varying the initiator addition time
,”
Soft Matter
21
,
1571
(
2025
).
60.
H.
Hamamoto
,
K.
Himei
,
S.
Inoue
,
H.
Aota
, and
A.
Matsumoto
, “
Microgel-like network polymer precursor formation in free-radical cross-linking multiallyl polymerization
,”
Polym. J.
42
,
923
927
(
2010
).
61.
K. S.
Kim
,
S. H.
Cho
, and
Y. J.
Kim
, “
Preparation of core-corona type microgels of polyacrylamide
,”
Polym. J.
25
,
847
851
(
1993
).
62.
F.
Scheffold
, “
Pathways and challenges towards a complete characterization of microgels
,”
Nat. Commun.
11
,
4315
(
2020
).
63.
K.
Kratz
,
T.
Hellweg
, and
W.
Eimer
, “
Effect of connectivity and charge density on the swelling and local structural and dynamic properties of colloidal PNIPAM microgels
,”
Ber. Bunsen-Ges. Phys. Chem.
102
,
1603
1608
(
1998
).
64.
K.
Kratz
,
T.
Hellweg
, and
W.
Eimer
, “
Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques
,”
Polymer
42
,
6631
6639
(
2001
).
65.
M.-h.
Kwok
,
Z.
Li
, and
T.
Ngai
, “
Controlling the synthesis and characterization of micrometer-sized PNIPAM microgels with tailored morphologies
,”
Langmuir
29
,
9581
9591
(
2013
).
66.
T.
Hoare
and
R.
Pelton
, “
Electrophoresis of functionalized microgels: Morphological insights
,”
Polymer
46
,
1139
1150
(
2005
).
67.
R. H.
Pelton
,
H. M.
Pelton
,
A.
Morphesis
, and
R. L.
Rowell
, “
Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex
,”
Langmuir
5
,
816
818
(
1989
).
68.
V.
Nigro
,
R.
Angelini
,
B.
Rosi
,
M.
Bertoldo
,
E.
Buratti
,
S.
Casciardi
,
S.
Sennato
, and
B.
Ruzicka
, “
Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid)
,”
J. Colloid Interface Sci.
545
,
210
219
(
2019
).
69.
S.
Minami
,
D.
Suzuki
, and
K.
Urayama
, “
Rheological aspects of colloidal gels in thermoresponsive microgel suspensions: Formation, structure, and linear and nonlinear viscoelasticity
,”
Curr. Opin. Colloid Interface Sci.
43
,
113
124
(
2019
).
70.
Y.
Nishizawa
,
T.
Inui
,
R.
Namioka
,
T.
Uchihashi
,
T.
Watanabe
, and
D.
Suzuki
, “
Clarification of surface deswelling of thermoresponsive microgels by electrophoresis
,”
Langmuir
38
,
16084
16093
(
2022
).
71.
D.
Suzuki
, “
Nanogel/microgel science and beyond
,”
Langmuir
39
,
7525
7529
(
2023
).
72.
I.
Varga
,
T.
Gilányi
,
R.
Mészáros
,
G.
Filipcsei
, and
M.
Zrínyi
, “
Effect of cross-link density on the internal structure of poly (N-isopropylacrylamide) microgels
,”
J. Phys. Chem. B
105
,
9071
9076
(
2001
).
73.
C.
Misra
,
S. V.
Kawale
,
S. K.
Behera
, and
R.
Bandyopadhyay
, “
Effect of particle stiffness on microgel self-assembly and suspension phase behavior over a broad temperature range
,”
Phys. Fluids
36
,
103120
(
2024
).
74.
W.
McPhee
,
K. C.
Tam
, and
R.
Pelton
, “
Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate
,”
J. Colloid Interface Sci.
156
,
24
30
(
1993
).
75.
N. C.
Woodward
,
B. Z.
Chowdhry
,
M. J.
Snowden
,
S. A.
Leharne
,
P. C.
Griffiths
, and
A. L.
Winnington
, “
Calorimetric investigation of the influence of cross-linker concentration on the volume phase transition of poly(N-isopropylacrylamide) colloidal microgels
,”
Langmuir
19
,
3202
3211
(
2003
).
76.
H.
Senff
and
W.
Richtering
, “
Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions
,”
Colloid Polym. Sci.
278
,
830
840
(
2000
).
77.
A.
Burmistrova
,
M.
Richter
,
C.
Uzum
, and
R. v.
Klitzing
, “
Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young’s modulus
,”
Colloid Polym. Sci.
289
,
613
624
(
2011
).
78.
S.
Sbeih
,
P. S.
Mohanty
,
M. R.
Morrow
, and
A.
Yethiraj
, “
Structural parameters of soft pnipam microgel particles as a function of crosslink density
,”
J. Colloid Interface Sci.
552
,
781
793
(
2019
).
79.
M.
Rey
,
M. A.
Fernandez-Rodriguez
,
M.
Karg
,
L.
Isa
, and
N.
Vogel
, “
Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces
,”
Acc. Chem. Res.
53
,
414
424
(
2020
).
80.
A.
Scotti
,
M. F.
Schulte
,
C. G.
Lopez
,
J. J.
Crassous
,
S.
Bochenek
, and
W.
Richtering
, “
How softness matters in soft nanogels and nanogel assemblies
,”
Chem. Rev.
122
,
11675
11700
(
2022
).
81.
M.
Karg
,
S.
Prévost
,
A.
Brandt
,
D.
Wallacher
,
R.
von Klitzing
, and
T.
Hellweg
, “
Poly-NIPAM microgels with different cross-linker densities: Scaling behavior of the network fluctuations in the vicinity of the volume phase transition
,” in
Intelligent Hydrogels
(
Springer
,
2013
), pp.
63
76
.
82.
K. C.
Tam
,
S.
Ragaram
, and
R. H.
Pelton
, “
Interaction of surfactants with poly(N-isopropylacrylamide) microgel latexes
,”
Langmuir
10
,
418
422
(
1994
).
83.
M.
Andersson
and
S. L.
Maunu
, “
Structural studies of poly(N‐isopropylacrylamide) microgels: Effect of SDS surfactant concentration in the microgel synthesis
,”
J. Polym. Sci., Part B: Polym. Phys.
44
,
3305
3314
(
2006
).
84.
Z.
Li
,
D.
Harbottle
,
E.
Pensini
,
T.
Ngai
,
W.
Richtering
, and
Z.
Xu
, “
Fundamental study of emulsions stabilized by soft and rigid particles
,”
Langmuir
31
,
6282
6288
(
2015
).
85.
Y.
Utashiro
,
M.
Takiguchi
, and
M.
Satoh
, “
Zeta potential of PNIPAM microgel particles dispersed in water—Effects of charged radical initiators vs. OH− ion adsorption
,”
Colloid Polym. Sci.
295
,
45
52
(
2017
).
86.
T.
Hellweg
, “
Responsive core–shell microgels: Synthesis, characterization, and possible applications
,”
J. Polym. Sci., Part B: Polym. Phys.
51
,
1073
1083
(
2013
).
87.
G.-H.
Hsiue
,
S.-h.
Hsu
,
C.-C.
Yang
,
S.-H.
Lee
, and
I.-K.
Yang
, “
Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide
,”
Biomaterials
23
,
457
462
(
2002
).
88.
S. H.
Choi
,
J. J.
Yoon
, and
T. G.
Park
, “
Galactosylated poly(N-isopropylacrylamide) hydrogel submicrometer particles for specific cellular uptake within hepatocytes
,”
J. Colloid Interface Sci.
251
,
57
63
(
2002
).
89.
N.
Murthy
,
Y. X.
Thng
,
S.
Schuck
,
M. C.
Xu
, and
J. M. J.
Fréchet
, “
A novel strategy for encapsulation and release of proteins: Hydrogels and microgels with acid-labile acetal cross-linkers
,”
J. Am. Chem. Soc.
124
,
12398
12399
(
2002
).
90.
S.
Nayak
,
H.
Lee
,
J.
Chmielewski
, and
L. A.
Lyon
, “
Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels
,”
J. Am. Chem. Soc.
126
,
10258
10259
(
2004
).
91.
C. M.
Nolan
,
C. D.
Reyes
,
J. D.
Debord
,
A. J.
García
, and
L. A.
Lyon
, “
Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles
,”
Biomacromolecules
6
,
2032
2039
(
2005
).
92.
V. C.
Lopez
,
J.
Hadgraft
, and
M. j.
Snowden
, “
The use of colloidal microgels as a (trans)dermal drug delivery system
,”
Int. J. Pharm.
292
,
137
147
(
2005
).
93.
C. M.
Nolan
,
L. T.
Gelbaum
, and
L. A.
Lyon
, “
H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels
,”
Biomacromolecules
7
,
2918
2922
(
2006
).
94.
T. R.
Hoare
and
D. S.
Kohane
, “
Hydrogels in drug delivery: Progress and challenges
,”
Polymer
49
,
1993
2007
(
2008
).
95.
J. R.
Retama
,
B.
Lopez-Ruiz
, and
E.
Lopez-Cabarcos
, “
Microstructural modifications induced by the entrapped glucose oxidase in cross-linked polyacrylamide microgels used as glucose sensors
,”
Biomaterials
24
,
2965
2973
(
2003
).
96.
I.
Varga
,
I.
Szalai
,
R.
Mészaros
, and
T.
Gilányi
, “
Pulsating ph-responsive nanogels
,”
J. Phys. Chem. B
110
,
20297
20301
(
2006
).
97.
R.
Acciaro
,
C.
Aulin
,
L.
Wågberg
,
T.
Lindström
,
P. M.
Claesson
, and
I.
Varga
, “
Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels
,”
Soft Matter
7
,
1369
1377
(
2011
).
98.
M. J.
Serpe
,
C. D.
Jones
, and
L. A.
Lyon
, “
Layer-by-layer deposition of thermoresponsive microgel thin films
,”
Langmuir
19
,
8759
8764
(
2003
).
99.
S.
Schmidt
,
T.
Hellweg
, and
R.
von Klitzing
, “
Packing density control in P(NIPAM-co-AAc) microgel monolayers: Effect of surface charge, pH, and preparation technique
,”
Langmuir
24
,
12595
12602
(
2008
).
100.
V.
Nerapusri
,
J. L.
Keddie
,
B.
Vincent
, and
I. A.
Bushnak
, “
Absorption of cetylpyridinium chloride into poly(N-isopropylacrylamide)-based microgel particles, in dispersion and as surface-deposited monolayers
,”
Langmuir
23
,
9572
9577
(
2007
).
101.
L.
Bromberg
,
M.
Temchenko
, and
T. A.
Hatton
, “
Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic acid)
,”
Langmuir
19
,
8675
8684
(
2003
).
102.
M.
Muratalin
,
P. F.
Luckham
,
A.
Esimova
,
S.
Aidarova
,
B.
Mutaliyeva
,
G.
Madybekova
,
A.
Sharipova
, and
A.
Issayeva
, “
Study of N-isopropylacrylamide-based microgel particles as a potential drug delivery agents
,”
Colloids Surf., A
532
,
8
17
(
2017
).
103.
M.
Otten
,
M.
Hildebrandt
,
B.
Pfeffing
,
V. C.
Voigt
,
F.
Scheffold
,
T.
Hellweg
, and
M.
Karg
, “
Volume phase transition of thermoresponsive microgels scrutinized by dynamic light scattering and turbidity: Correlations depend on microgel homogeneity
,”
Langmuir
40
,
14515
14526
(
2024
).
104.
A. L.
Navarro-Verdugo
,
F. M.
Goycoolea
,
G.
Romero-Meléndez
,
I.
Higuera-Ciapara
, and
W.
Argüelles-Monal
, “
A modified Boltzmann sigmoidal model for the phase transition of smart gels
,”
Soft Matter
7
,
5847
5853
(
2011
).
105.
A.
Campos-Ramírez
,
A.
Lozano-Martínez
,
M.
Ledesma-Motolinía
,
L. F.
Rojas-Ochoa
, and
C.
Haro-Pérez
, “
Effective charge of PNIPAM microgels determined by conductivity measurements
,”
J. Polym. Sci.
61
,
2115
2121
(
2023
).
106.
Y.
Hertle
and
T.
Hellweg
, “
Thermoresponsive copolymer microgels
,”
J. Mater. Chem. B
1
,
5874
5885
(
2013
).
107.
S.
Kasas
,
G.
Longo
, and
G.
Dietler
, “
Mechanical properties of biological specimens explored by atomic force microscopy
,”
J. Phys. D: Appl. Phys.
46
,
133001
(
2013
).
108.
M. F.
Schulte
,
S.
Bochenek
,
M.
Brugnoni
,
A.
Scotti
,
A.
Mourran
, and
W.
Richtering
, “
Stiffness tomography of ultra-soft nanogels by atomic force microscopy
,”
Angew. Chem., Int. Ed.
60
,
2280
2287
(
2021
).
109.
S.
Ciarella
,
M.
Rey
,
J.
Harrer
,
N.
Holstein
,
M.
Ickler
,
H.
Löwen
,
N.
Vogel
, and
L. M. C.
Janssen
, “
Soft particles at liquid interfaces: From molecular particle architecture to collective phase behavior
,”
Langmuir
37
,
5364
5375
(
2021
).
110.
J.
Vialetto
,
N.
Nussbaum
,
J.
Bergfreund
,
P.
Fischer
, and
L.
Isa
, “
Influence of the interfacial tension on the microstructural and mechanical properties of microgels at fluid interfaces
,”
J. Colloid Interface Sci.
608
,
2584
2592
(
2022
).
111.
H.-J.
Butt
,
B.
Cappella
, and
M.
Kappl
, “
Force measurements with the atomic force microscope: Technique, interpretation and applications
,”
Surf. Sci. Rep.
59
,
1
152
(
2005
).
112.
N.
Dingenouts
,
S.
Seelenmeyer
,
I.
Deike
,
S.
Rosenfeldt
,
M.
Ballauff
,
P.
Lindner
, and
T.
Narayanan
, “
Analysis of thermosensitive core–shell colloids by small-angle neutron scattering including contrast variation
,”
Phys. Chem. Chem. Phys.
3
,
1169
1174
(
2001
).
113.
V. G.
Reynolds
,
D. H.
Callan
,
K.
Saurabh
,
E. A.
Murphy
,
K. R.
Albanese
,
Y.-Q.
Chen
,
C.
Wu
,
E.
Gann
,
C. J.
Hawker
,
B.
Ganapathysubramanian
et al, “
Simulation-guided analysis of resonant soft x-ray scattering for determining the microstructure of triblock copolymers
,”
Mol. Syst. Des. Eng.
7
,
1449
1458
(
2022
).
You do not currently have access to this content.