We reconsider the classical problem of a freely joined chain of Brownian particles connected by elastic springs and study its conformational probability distribution function in the overdamped regime in the limit of infinite stiffness of constraints. We show that the well-known solution by Fixman [Proc. Natl. Acad. Sci. U. S. A. 71, 3050 (1974)] is missing a shape-related term, later alluded to but not computed by Helfand [J. Chem. Phys 71, 5000 (1979)]. In our approach, the shape term, also termed zero-point energy, arises explicitly from a careful treatment of the distributional limit. We present a computationally feasible method for the calculation of the shape term and demonstrate its validity in a couple of examples.
REFERENCES
1.
H. A.
Kramers
, “The behavior of macromolecules in inhomogeneous flow
,” J. Chem. Phys.
14
, 415
(1946
).2.
P.
Flory
, Principles Of Polymer Chemistry
, Baker Lectures 1948
(Cornell University Press
, 1953
).3.
D.
Frenkel
and B.
Smit
, Understanding Molecular Simulation: From Algorithms to Applications
(Elsevier
, 2023
).4.
J.-P.
Ryckaert
, G.
Ciccotti
, and H. J. C.
Berendsen
, “Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,” J. Comput. Phys.
23
, 327
(1977
).5.
M.
Fixman
, “Classical statistical mechanics of constraints: A theorem and application to polymers
,” Proc. Natl. Acad. Sci. U. S. A.
71
, 3050
(1974
).6.
N.
Gō
and H. A.
Scheraga
, “Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules
,” J. Chem. Phys.
51
, 4751
(1969
).7.
M. R.
Pear
and J. H.
Weiner
, “Brownian dynamics study of a polymer chain of linked rigid bodies
,” J. Chem. Phys.
71
, 212
(1979
).8.
E. J.
Hinch
, “Brownian motion with stiff bonds and rigid constraints
,” J. Fluid Mech.
271
, 219
(1994
).9.
W. K.
den Otter
and W. J.
Briels
, “The calculation of free-energy differences by constrained molecular-dynamics simulations
,” J. Chem. Phys.
109
, 4139
(1998
).10.
T. W.
Liu
, “Flexible polymer chain dynamics and rheological properties in steady flows
,” J. Chem. Phys.
90
, 5826
(1989
).11.
E.
Helfand
, “Flexible vs rigid constraints in statistical mechanics
,” J. Chem. Phys.
71
, 5000
(1979
).12.
P. S.
Grassia
, E. J.
Hinch
, and L. C.
Nitsche
, “Computer simulations of Brownian motion of complex systems
,” J. Fluid Mech.
282
, 373
(1995
).13.
N. G.
van Kampen
and J. J.
Lodder
, “Constraints
,” Am. J. Phys.
52
, 419
(1984
).14.
A.
Vitalis
and R. V.
Pappu
, “Methods for Monte Carlo simulations of biomacromolecules
,” Annu. Rep. Comput. Chem.
5
, 49
(2009
).15.
M. P.
Allen
, “Introduction to molecular dynamics simulation
,” in Computational Soft Matter: From Synthetic Polymers to Proteins
, edited by N.
Attig
, K.
Binder
, H.
Grubmüller
, and K.
Kremer
(NIC Series Jülich
, Germany
, 2004
), Vol. 23
, pp. 1
–28
.16.
17.
J. M.
Lee
, Introduction to Smooth Manifolds
(Springer
, New York
, 2003
).18.
R.
Waszkiewicz
, M.
Bartczak
, K.
Kolasa
, and M.
Lisicki
, “Pychastic: Precise Brownian dynamics using Taylor-Itō integrators in Python
,” SciPost Phys. Codebases
2023
, 11
.© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.