Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm−1, a region that includes the fundamental transitions of the C–H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin–orbit coupling, the spin-vibronic problem was solved using both the Krylov–Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm−1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.

1.
C. R.
Kaplan
,
G.
Patnaik
, and
K.
Kailasanath
,
Combust. Sci. Technol.
131
,
39
65
(
1998
).
2.
W. A.
Glasson
,
Environ. Sci. Technol.
9
,
1048
1053
(
1975
).
3.
Y.
Endo
,
S.
Saito
, and
E.
Hirota
,
J. Chem. Phys.
81
,
122
(
1984
).
4.
T. A.
Barckholtz
and
T. A.
Miller
,
Int. Rev. Phys. Chem.
17
,
435
(
1998
).
5.
S. C.
Foster
,
P.
Misra
,
T. Y. D.
Lin
,
C. P.
Damo
,
C. C.
Carter
, and
T. A.
Miller
,
J. Phys. Chem.
92
,
5914
(
1988
).
6.
G.
Inoue
,
H.
Akimoto
, and
M.
Okuda
,
Chem. Phys. Lett.
63
,
213
(
1979
).
7.
Y.-Y.
Lee
,
G.-H.
Wann
, and
Y.-P.
Lee
,
J. Chem. Phys.
99
,
9465
9471
(
1993
).
8.
M. J.
Nee
,
A.
Osterwalder
,
J.
Zhou
, and
D. M.
Neumark
,
J. Chem. Phys.
125
,
014306
(
2006
).
9.
T. M.
Ramond
,
G. E.
Davico
,
R. L.
Schwartz
, and
W. C.
Lineberger
,
J. Chem. Phys.
112
,
1158
(
2000
).
10.
D. L.
Osborn
,
D. J.
Leahy
,
E. M.
Ross
, and
D. M.
Neumark
,
Chem. Phys. Lett.
235
,
484
(
1995
).
11.
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Phys. Chem. A
101
,
6583
(
1997
).
12.
H. E.
Radford
and
D. K.
Russell
,
J. Chem. Phys.
66
,
2222
(
1977
).
13.
T.
Momose
,
Y.
Endo
,
E.
Hirota
, and
T.
Shida
,
J. Chem. Phys.
88
,
5338
(
1988
).
14.
T.
Momose
,
Y.
Endo
,
E.
Hirota
, and
T.
Shida
,
J. Chem. Phys.
90
,
4636
(
1989
).
15.
J.
Liu
,
M.-W.
Chen
,
D.
Melnik
,
J. T.
Yi
, and
T. A.
Miller
,
J. Chem. Phys.
130
,
074302
(
2009
).
16.
J.
Liu
,
M.-W.
Chen
,
D.
Melnik
,
T. A.
Miller
,
Y.
Endo
, and
E.
Hirota
,
J. Chem. Phys.
130
,
074303
(
2009
).
17.
D. G.
Melnik
,
J.
Liu
,
M.-W.
Chen
,
T. A.
Miller
, and
R. F.
Curl
,
J. Chem. Phys.
135
,
094310
(
2011
).
18.
B. E.
Applegate
,
M. B.
Pushkarsky
, and
T. A.
Miller
,
J. Phys. Chem. A
103
,
1538
(
1999
).
19.
D. K.
Russell
and
H. E.
Radford
,
J. Chem. Phys.
72
,
2750
(
1980
).
20.
K.
Sharma
,
T. A.
Miller
, and
J. F.
Stanton
,
Int. Rev. Phys. Chem.
40
,
165
298
(
2021
).
21.
P.
Misra
,
X.
Zhu
,
C.-Y.
Hsueh
, and
J. B.
Halpern
,
Chem. Phys.
178
,
377
(
1993
).
22.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Wiebrecht
,
J. Chem. Phys.
93
,
1472
(
1990
).
23.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Wiebrecht
,
J. Opt. Soc. Am. B
7
,
1935
(
1990
).
24.
F.
Temps
, “
Vibrational spectroscopy, intramolecular dynamics and state specific unimolecular dissociation of CH3O (X2E)
,” in
Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping
(World Scientific Press, 1995), pp. 375–431.
25.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
T. J.
Sears
,
J. Chem. Phys.
98
,
4297
(
1993
).
26.
S.
Dertinger
,
A.
Geers
,
J.
Kappert
,
J.
Wiebrecht
, and
F.
Temps
,
Faraday Discuss.
102
,
31
(
1995
).
27.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Wiebrecht
,
J. Chem. Phys.
101
,
3634
(
1994
).
28.
A.
Geers
et al,
J. Chem. Phys.
101
,
3634
(
1994
).
29.
M. L.
Weichman
,
L.
Cheng
,
J. B.
Kim
,
J. F.
Stanton
, and
D. M.
Neumark
,
J. Chem. Phys.
146
,
224309
(
2017
).
30.
Y.-F.
Lee
,
W.-T.
Chou
,
B. A.
Johnson
,
D. P.
Tabor
,
E. L.
Sibert
, and
Y.-P.
Lee
,
J. Mol. Spectrosc.
310
,
57
67
(
2015
).
31.
J.
Schmidt-Klugmann
,
H.
Koppel
,
S.
Schmatz
, and
P.
Botschwina
,
Chem. Phys. Lett.
369
,
21
30
(
2003
).
32.
A. V.
Marenich
and
J. E.
Boggs
,
J. Chem. Phys.
119
,
3098
3105
(
2003
).
33.
A. V.
Marenich
and
J. E.
Boggs
,
J. Chem. Phys.
122
,
024308
(
2005
).
34.
A. V.
Marenich
and
J. E.
Boggs
,
Int. J. Quantum Chem.
106
,
2609
2616
(
2006
).
35.
A. V.
Marenich
and
J. E.
Boggs
,
J. Mol. Struct.
780–781
,
163
170
(
2006
).
36.
J.
Nagesh
and
E. L.
Sibert
,
Phys. Chem. Chem. Phys.
12
,
8250
(
2010
).
37.
J.
Nagesh
and
E. L.
Sibert
,
J. Phys. Chem. A
116
,
3846
3855
(
2012
).
38.
J.
Nagesh
,
E. L.
Sibert
, and
J. F.
Stanton
,
Spectrochim. Acta, Part A
119
,
90
99
(
2014
).
39.
T.
Zeng
and
I.
Seidu
,
Phys. Chem. Chem. Phys.
19
,
11098
11110
(
2017
).
40.
J.
Brown
,
R. A.
Lang
, and
T.
Zeng
,
J. Chem. Theory Comput.
17
,
4392
4402
(
2021
).
41.
E.
Pradhan
and
T.
Zeng
,
J. Chem. Theory Comput.
19
,
7776
7786
(
2023
).
42.
K.
Sharma
,
O. A.
Vasilyev
,
T. A.
Miller
, and
J. F.
Stanton
,
J. Phys.: Conf. Ser.
2769
,
012002
(
2024
).
43.
K.
Sharma
,
S.
Garner
,
T. A.
Miller
, and
J. F.
Stanton
,
J. Phys. Chem. A
123
,
4990
5004
(
2019
).
44.
J. K. G.
Watson
,
J. Mol. Spectrosc.
50
,
281
(
1974
).
45.
X.
Liu
,
L.
Yu
, and
T. A.
Miller
,
J. Mol. Spectrosc.
140
,
112
(
1990
).
46.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
National Research Council Canada
,
2006
).
47.
L. S.
Rothman
et al,
J. Quant. Spectrosc. Radiat. Transfer
96
,
139
(
2005
).
48.
P. F.
Bernath
,
Spectra of Atoms and Molecules
, 2nd ed. (
Oxford University Press
,
New York
,
2005
).
49.
M. S.
Child
and
H. C.
Longuet-Higgins
,
Philos. Trans. R. Soc. London, Ser. A
254
,
259
(
1961
).
50.
J.-x.
Han
,
Y. G.
Utkin
,
H.-b.
Chen
,
L. A.
Burns
, and
R. F.
Curl
,
J. Chem. Phys.
117
,
6538
6545
(
2002
).
51.
J.
Han
,
S.
Hu
,
H.
Chen
,
Y.
Utkin
,
J. M.
Brown
, and
R. F.
Curl
,
Phys. Chem. Chem. Phys.
9
,
3725
(
2007
).
52.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
152
,
214108
(
2020
).
You do not currently have access to this content.