We present an energy-specific Bethe–Salpeter equation (BSE) implementation for efficient core and valence optical spectrum calculations. In the energy-specific BSE, high-lying excitation energies are obtained by constructing trial vectors and expanding the subspace targeting excitation energies above the predefined energy threshold in the Davidson algorithm. To calculate optical spectra over a wide energy range, energy-specific BSE can be applied to multiple consecutive small energy windows, where trial vectors for each subsequent energy window are made orthogonal to the subspace of preceding windows to accelerate the convergence of the Davidson algorithm. For seven small molecules, energy-specific BSE combined with G0W0 provides small errors around 0.8 eV for absolute and relative K-edge excitation energies when starting from a hybrid PBEh solution with 45% exact exchange. We further showcase the computational efficiency of this approach by simulating the N 1s K-edge excitation spectrum of the porphine molecule and the valence optical spectrum of silicon nanoclusters involving 6000 excited states using G0W0-BSE. This work expands the applicability of the GW-BSE formalism for investigating high-energy excited states of large systems.

1.
D.
Rappoport
and
F.
Furche
, “
Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile—A theoretical perspective
,”
J. Am. Chem. Soc.
126
,
1277
1284
(
2004
).
2.
S.
Zhang
,
S.
Sun
,
M.
Zhou
,
L.
Wang
, and
B.
Zhang
, “
Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product
,”
Sci. Rep.
7
,
43419
(
2017
).
3.
T.
Zhu
and
T.
Van Voorhis
, “
Charge recombination in phosphorescent organic light-emitting diode host–guest systems through QM/MM simulations
,”
J. Phys. Chem. C
120
,
19987
19994
(
2016
).
4.
T.
Zhu
,
T.
Van Voorhis
, and
P.
de Silva
, “
Charge transfer in molecular materials
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2018
), pp.
1
31
.
5.
T.
Zhu
and
T.
Van Voorhis
, “
Unraveling the fate of host excitons in host–guest phosphorescent organic light-emitting diodes
,”
J. Phys. Chem. C
123
,
10311
10318
(
2019
).
6.
M. T.
Frederick
,
V. A.
Amin
,
N. K.
Swenson
,
A. Y.
Ho
, and
E. A.
Weiss
, “
Control of exciton confinement in quantum dot–organic complexes through energetic alignment of interfacial orbitals
,”
Nano Lett.
13
,
287
292
(
2013
).
7.
S. V.
Kilina
,
P. K.
Tamukong
, and
D. S.
Kilin
, “
Surface chemistry of semiconducting quantum dots: Theoretical perspectives
,”
Acc. Chem. Res.
49
,
2127
2135
(
2016
).
8.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
,
Recent Advances in Computational Chemistry Vol. 1
(
World Scientific
,
1995
), pp.
155
192
.
9.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
OUP Oxford
,
2011
).
10.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules
,”
J. Chem. Phys.
109
,
8218
8224
(
1998
).
11.
F.
Furche
and
R.
Ahlrichs
, “
Adiabatic time-dependent density functional methods for excited state properties
,”
J. Chem. Phys.
117
,
7433
7447
(
2002
).
12.
F.
Sottile
,
F.
Bruneval
,
A. G.
Marinopoulos
,
L. K.
Dash
,
S.
Botti
,
V.
Olevano
,
N.
Vast
,
A.
Rubio
, and
L.
Reining
, “
TDDFT from molecules to solids: The role of long-range interactions
,”
Int. J. Quantum Chem.
102
,
684
701
(
2005
).
13.
M. E.
Casida
, “
Time-dependent density-functional theory for molecules and molecular solids
,”
J. Mol. Struct.: THEOCHEM
914
,
3
18
(
2009
).
14.
A. D.
Laurent
and
D.
Jacquemin
, “
TD-DFT benchmarks: A review
,”
Int. J. Quantum Chem.
113
,
2019
2039
(
2013
).
15.
E.
Brémond
,
M.
Savarese
,
C.
Adamo
, and
D.
Jacquemin
, “
Accuracy of TD-DFT geometries: A fresh look
,”
J. Chem. Theory Comput.
14
,
3715
3727
(
2018
).
16.
R.
Sarkar
,
M.
Boggio-Pasqua
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments
,”
J. Chem. Theory Comput.
17
,
1117
1132
(
2021
).
17.
Y.
Jin
,
V. W.-z.
Yu
,
M.
Govoni
,
A. C.
Xu
, and
G.
Galli
, “
Excited state properties of point defects in semiconductors and insulators investigated with time-dependent density functional theory
,”
J. Chem. Theory Comput.
19
,
8689
8705
(
2023
).
18.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
2946
(
2003
).
19.
D. J.
Tozer
, “
Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory
,”
J. Chem. Phys.
119
,
12697
12699
(
2003
).
20.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
A823
(
1965
).
21.
R. M.
Martin
,
L.
Reining
, and
D. M.
Ceperley
,
Interacting Electrons
(
Cambridge University Press
,
2016
).
22.
E. E.
Salpeter
and
H. A.
Bethe
, “
A relativistic equation for bound-state problems
,”
Phys. Rev.
84
,
1232
1242
(
1951
).
23.
L. J.
Sham
and
T. M.
Rice
, “
Many-particle derivation of the effective-mass equation for the Wannier exciton
,”
Phys. Rev.
144
,
708
714
(
1966
).
24.
W.
Hanke
and
L. J.
Sham
, “
Many-particle effects in the optical excitations of a semiconductor
,”
Phys. Rev. Lett.
43
,
387
390
(
1979
).
25.
G.
Strinati
, “
Dynamical shift and broadening of core excitons in semiconductors
,”
Phys. Rev. Lett.
49
,
1519
1522
(
1982
).
26.
X.
Blase
and
C.
Attaccalite
, “
Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach
,”
Appl. Phys. Lett.
99
,
171909
(
2011
).
27.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
, “
Assessment of the convergence of partially self-consistent BSE/GW calculations
,”
Mol. Phys.
114
,
957
967
(
2016
).
28.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
, “
Is the Bethe–Salpeter formalism accurate for excitation energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD
,”
J. Phys. Chem. Lett.
8
,
1524
1529
(
2017
).
29.
C.
Azarias
,
I.
Duchemin
,
X.
Blase
, and
D.
Jacquemin
, “
Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT
,”
J. Chem. Phys.
146
,
034301
(
2017
).
30.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
, “
An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation
,”
J. Chem. Phys.
146
,
194108
(
2017
).
31.
E.
Monino
and
P.-F.
Loos
, “
Spin-conserved and spin-flip optical excitations from the Bethe–Salpeter equation formalism
,”
J. Chem. Theory Comput.
17
,
2852
2867
(
2021
).
32.
Y.
Cho
,
S. J.
Bintrim
, and
T. C.
Berkelbach
, “
Simplified GW/BSE approach for charged and neutral excitation energies of large molecules and nanomaterials
,”
J. Chem. Theory Comput.
18
,
3438
3446
(
2022
).
33.
C. A.
McKeon
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
, “
An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
,”
J. Chem. Phys.
157
,
074103
(
2022
).
34.
J.
Li
,
Y.
Jin
,
N. Q.
Su
, and
W.
Yang
, “
Combining localized orbital scaling correction and Bethe–Salpeter equation for accurate excitation energies
,”
J. Chem. Phys.
156
,
154101
(
2022
).
35.
J.
Li
,
D.
Golze
, and
W.
Yang
, “
Combining renormalized singles GW methods with the Bethe–Salpeter equation for accurate neutral excitation energies
,”
J. Chem. Theory Comput.
18
,
6637
6645
(
2022
).
36.
C.
Vorwerk
and
G.
Galli
, “
Disentangling photoexcitation and photoluminescence processes in defective MgO
,”
Phys. Rev. Mater.
7
,
033801
(
2023
).
37.
X.
Zhang
,
J. A.
Leveillee
, and
A.
Schleife
, “
Effect of dynamical screening in the Bethe-Salpeter framework: Excitons in crystalline naphthalene
,”
Phys. Rev. B
107
,
235205
(
2023
).
38.
J. B.
Haber
,
D. Y.
Qiu
,
F. H.
da Jornada
, and
J. B.
Neaton
, “
Maximally localized exciton Wannier functions for solids
,”
Phys. Rev. B
108
,
125118
(
2023
).
39.
N.
Rauwolf
,
W.
Klopper
, and
C.
Holzer
, “
Non-linear light–matter interactions from the Bethe–Salpeter equation
,”
J. Chem. Phys.
160
,
061101
(
2024
).
40.
J.
Wu
,
B.
Hou
,
W.
Li
,
Y.
He
, and
D. Y.
Qiu
, “
Quasiparticle and excitonic properties of monolayer 1t′WTe2 within many-body perturbation theory
,”
Phys. Rev. B
110
,
075133
(
2024
).
41.
R.
Zhou
,
Y.
Yao
,
V.
Blum
,
X.
Ren
, and
Y.
Kanai
, “
All-electron BSE@GW method with numeric atom-centered orbitals for extended periodic systems
,”
J. Chem. Theory Comput.
21
,
291
306
(
2025
).
42.
X.
Blase
,
I.
Duchemin
, and
D.
Jacquemin
, “
The Bethe–Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges
,”
Chem. Soc. Rev.
47
,
1022
1043
(
2018
).
43.
X.
Blase
,
I.
Duchemin
,
D.
Jacquemin
, and
P.-F.
Loos
, “
The Bethe–Salpeter equation formalism: From physics to chemistry
,”
J. Phys. Chem. Lett.
11
,
7371
7382
(
2020
).
44.
W.
Kohn
and
L. J.
Sham
, “
Self-Consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
45.
R. G.
Parr
and
Y.
Weitao
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
46.
K.
Krause
and
W.
Klopper
, “
Implementation of the Bethe–Salpeter equation in the TURBOMOLE program
,”
J. Comput. Chem.
38
,
383
388
(
2017
).
47.
H.
van Aggelen
,
Y.
Yang
, and
W.
Yang
, “
Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random-phase approximation
,”
Phys. Rev. A
88
,
030501
(
2013
).
48.
Y.
Yang
,
H.
van Aggelen
, and
W.
Yang
, “
Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation
,”
J. Chem. Phys.
139
,
224105
(
2013
).
49.
Y.
Yang
,
D.
Peng
,
J.
Lu
, and
W.
Yang
, “
Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies
,”
J. Chem. Phys.
141
,
124104
(
2014
).
50.
Y.
Yang
,
D.
Peng
,
E. R.
Davidson
, and
W.
Yang
, “
Singlet–triplet energy gaps for diradicals from particle–particle random phase approximation
,”
J. Phys. Chem. A
119
,
4923
4932
(
2015
).
51.
Y.
Yang
,
A.
Dominguez
,
D.
Zhang
,
V.
Lutsker
,
T. A.
Niehaus
,
T.
Frauenheim
, and
W.
Yang
, “
Charge transfer excitations from particle-particle random phase approximation—Opportunities and challenges arising from two-electron deficient systems
,”
J. Chem. Phys.
146
,
124104
(
2017
).
52.
J.
Li
,
J.
Yu
,
Z.
Chen
, and
W.
Yang
, “
Linear scaling calculations of excitation energies with active-space particle–particle random-phase approximation
,”
J. Phys. Chem. A
127
,
7811
7822
(
2023
).
53.
J.
Li
,
Z.
Chen
, and
W.
Yang
, “
Multireference density functional theory for describing ground and excited states with renormalized singles
,”
J. Phys. Chem. Lett.
13
,
894
903
(
2022
).
54.
J.
Li
,
Y.
Jin
,
J.
Yu
,
W.
Yang
, and
T.
Zhu
, “
Accurate excitation energies of point defects from fast particle–particle random phase approximation calculations
,”
J. Phys. Chem. Lett.
15
,
2757
2764
(
2024
).
55.
J.
Li
,
Y.
Jin
,
J.
Yu
,
W.
Yang
, and
T.
Zhu
, “
Particle–particle random phase approximation for predicting correlated excited states of point defects
,”
J. Chem. Theory Comput.
20
,
7979
7989
(
2024
).
56.
K. J.
Oosterbaan
,
A. F.
White
, and
M.
Head-Gordon
, “
Non-orthogonal configuration interaction with single substitutions for core-excited states: An extension to doublet radicals
,”
J. Chem. Theory Comput.
15
,
2966
2973
(
2019
).
57.
K.
Carter-Fenk
and
M.
Head-Gordon
, “
On the choice of reference orbitals for linear-response calculations of solution-phase K-edge X-ray absorption spectra
,”
Phys. Chem. Chem. Phys.
24
,
26170
26179
(
2022
).
58.
P.-F.
Loos
,
M.
Boggio-Pasqua
,
A.
Scemama
,
M.
Caffarel
, and
D.
Jacquemin
, “
Reference energies for double excitations
,”
J. Chem. Theory Comput.
15
,
1939
1956
(
2019
).
59.
P.-F.
Loos
,
M.
Comin
,
X.
Blase
, and
D.
Jacquemin
, “
Reference energies for intramolecular charge-transfer excitations
,”
J. Chem. Theory Comput.
17
,
3666
3686
(
2021
).
60.
P.-F.
Loos
,
D. A.
Matthews
,
F.
Lipparini
, and
D.
Jacquemin
, “
How accurate are EOM-CC4 vertical excitation energies?
,”
J. Chem. Phys.
154
,
221103
(
2021
).
61.
P.-F.
Loos
and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes
,”
J. Comput. Chem.
45
,
1791
1805
(
2024
).
62.
P.
Michalak
and
M.
Lesiuk
, “
Rank-reduced equation-of-motion coupled cluster triples: An accurate and affordable way of calculating electronic excitation energies
,”
J. Chem. Theory Comput.
20
,
8970
8983
(
2024
).
63.
N. O. C.
Winter
,
N. K.
Graf
,
S.
Leutwyler
, and
C.
Hättig
, “
Benchmarks for 0–0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data
,”
Phys. Chem. Chem. Phys.
15
,
6623
6630
(
2013
).
64.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
65.
I. M.
Mazin
and
A. Y.
Sokolov
, “
Core-excited states and X-ray absorption spectra from multireference algebraic diagrammatic construction theory
,”
J. Chem. Theory Comput.
19
,
4991
5006
(
2023
).
66.
R.
Maier
,
M.
Bauer
, and
A.
Dreuw
, “
Consistent third-order one-particle transition and excited-state properties within the algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Phys.
159
,
014104
(
2023
).
67.
N.
Sülzner
and
C.
Hättig
, “
Role of singles amplitudes in ADC(2) and CC2 for low-lying electronically excited states
,”
J. Chem. Theory Comput.
20
,
2462
2474
(
2024
).
68.
D.
Hait
and
M.
Head-Gordon
, “
Orbital optimized density functional theory for electronic excited states
,”
J. Phys. Chem. Lett.
12
,
4517
4529
(
2021
).
69.
D.
Hait
,
K. J.
Oosterbaan
,
K.
Carter-Fenk
, and
M.
Head-Gordon
, “
Computing x-ray absorption spectra from linear-response particles atop optimized holes
,”
J. Chem. Phys.
156
,
201104
(
2022
).
70.
Y.
Yao
,
D.
Golze
,
P.
Rinke
,
V.
Blum
, and
Y.
Kanai
, “
All-electron BSE@GW method for K-edge core electron excitation energies
,”
J. Chem. Theory Comput.
18
,
1569
(
2022
).
71.
M.
Kick
,
E.
Alexander
,
A.
Beiersdorfer
, and
T.
Van Voorhis
, “
Super-resolution techniques to simulate electronic spectra of large molecular systems
,”
Nat. Commun.
15
,
8001
(
2024
).
72.
M.
Shao
,
F. H.
da Jornada
,
L.
Lin
,
C.
Yang
,
J.
Deslippe
, and
S. G.
Louie
, “
A structure preserving Lanczos algorithm for computing the optical absorption spectrum
,”
SIAM J. Matrix Anal. Appl.
39
,
683
711
(
2018
).
73.
M. R.
Wall
and
D.
Neuhauser
, “
Extraction, through filter-diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short-time segment of a signal. I. Theory and application to a quantum-dynamics model
,”
J. Chem. Phys.
102
,
8011
8022
(
1995
).
74.
N. C.
Bradbury
,
M.
Nguyen
,
J. R.
Caram
, and
D.
Neuhauser
, “
Bethe–Salpeter equation spectra for very large systems
,”
J. Chem. Phys.
157
,
031104
(
2022
).
75.
N. C.
Bradbury
,
T.
Allen
,
M.
Nguyen
,
K. Z.
Ibrahim
, and
D.
Neuhauser
, “
Optimized attenuated interaction: Enabling stochastic Bethe–Salpeter spectra for large systems
,”
J. Chem. Phys.
158
,
154104
(
2023
).
76.
W.
Liang
,
S. A.
Fischer
,
M. J.
Frisch
, and
X.
Li
, “
Energy-specific linear response TDHF/TDDFT for calculating high-energy excited states
,”
J. Chem. Theory Comput.
7
,
3540
3547
(
2011
).
77.
B.
Peng
,
P. J.
Lestrange
,
J. J.
Goings
,
M.
Caricato
, and
X.
Li
, “
Energy-specific equation-of-motion coupled-cluster methods for high-energy excited states: Application to K-edge X-ray absorption spectroscopy
,”
J. Chem. Theory Comput.
11
,
4146
4153
(
2015
).
78.
P. J.
Lestrange
,
P. D.
Nguyen
, and
X.
Li
, “
Calibration of energy-specific TDDFT for modeling K-edge XAS spectra of light elements
,”
J. Chem. Theory Comput.
11
,
2994
2999
(
2015
).
79.
J. M.
Kasper
,
D. B.
Williams-Young
,
E.
Vecharynski
,
C.
Yang
, and
X.
Li
, “
A well-tempered hybrid method for solving challenging time-dependent density functional theory (TDDFT) systems
,”
J. Chem. Theory Comput.
14
,
2034
2041
(
2018
).
80.
Z.
Bai
and
R.-C.
Li
, “
Minimization principles for the linear response eigenvalue problem I: Theory
,”
SIAM J. Matrix Anal. Appl.
33
,
1075
1100
(
2012
).
81.
M.
Shao
,
F. H.
da Jornada
,
C.
Yang
,
J.
Deslippe
, and
S. G.
Louie
, “
Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem
,”
Linear Algebra Appl.
488
,
148
167
(
2016
).
82.
S. K.
Ghosh
and
P. K.
Chattaraj
,
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity
(
CRC Press
,
2016
).
83.
D.
Rocca
,
D.
Lu
, and
G.
Galli
, “
Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory
,”
J. Chem. Phys.
133
,
164109
(
2010
).
84.
I.
Duchemin
,
T.
Deutsch
, and
X.
Blase
, “
Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: A Bethe-Salpeter study
,”
Phys. Rev. Lett.
109
,
167801
(
2012
).
85.
C.
Faber
,
P.
Boulanger
,
I.
Duchemin
,
C.
Attaccalite
, and
X.
Blase
, “
Many-body Green’s function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide
,”
J. Chem. Phys.
139
,
194308
(
2013
).
86.
E.
Vecharynski
,
J.
Brabec
,
M.
Shao
,
N.
Govind
, and
C.
Yang
, “
Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory
,”
Comput. Phys. Commun.
221
,
42
52
(
2017
).
87.
A rank-revealing QR decomposition is convenient since it allows one to discard negligible components of Q.
88.
89.
T.
Zhu
,
Z.-H.
Cui
, and
G. K.-L.
Chan
, “
Efficient formulation of ab initio quantum embedding in periodic systems: Dynamical mean-field theory
,”
J. Chem. Theory Comput.
16
,
141
153
(
2020
).
90.
Z.-H.
Cui
,
T.
Zhu
, and
G. K.-L.
Chan
, “
Efficient implementation of ab initio quantum embedding in periodic systems: Density matrix embedding theory
,”
J. Chem. Theory Comput.
16
,
119
129
(
2020
).
91.
T.
Zhu
and
G. K.-L.
Chan
, “
Ab initio full cell GW+DMFT for correlated materials
,”
Phys. Rev. X
11
,
021006
(
2021
).
92.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
93.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
94.
T.
Zhu
and
G. K.-L.
Chan
, “
All-electron Gaussian-based G0W0 for valence and core excitation energies of periodic systems
,”
J. Chem. Theory Comput.
17
,
727
741
(
2021
).
95.
J.
Lei
and
T.
Zhu
, “
Gaussian-based quasiparticle self-consistent GW for periodic systems
,”
J. Chem. Phys.
157
,
214114
(
2022
).
96.
G. L.
Stoychev
,
A. A.
Auer
, and
F.
Neese
, “
Automatic generation of auxiliary basis sets
,”
J. Chem. Theory Comput.
13
,
554
562
(
2017
).
97.
L.
Keller
,
V.
Blum
,
P.
Rinke
, and
D.
Golze
, “
Relativistic correction scheme for core-level binding energies from GW
,”
J. Chem. Phys.
153
,
114110
(
2020
).
98.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
99.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision A.03
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
100.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
101.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
102.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
, “
The GW-method for quantum chemistry applications: Theory and implementation
,”
J. Chem. Theory Comput.
9
,
232
246
(
2013
).
103.
D.
Golze
,
J.
Wilhelm
,
M. J.
van Setten
, and
P.
Rinke
, “
Core-level binding energies from GW: An efficient full-frequency approach within a localized basis
,”
J. Chem. Theory Comput.
14
,
4856
4869
(
2018
).
104.
D.
Golze
,
L.
Keller
, and
P.
Rinke
, “
Accurate absolute and relative core-level binding energies from GW
,”
J. Phys. Chem. Lett.
11
,
1840
1847
(
2020
).
105.
J.
Li
,
Y.
Jin
,
P.
Rinke
,
W.
Yang
, and
D.
Golze
, “
Benchmark of GW methods for core-level binding energies
,”
J. Chem. Theory Comput.
18
,
7570
7585
(
2022
).
106.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
107.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
108.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
109.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
110.
K.
Diller
,
F.
Klappenberger
,
F.
Allegretti
,
A. C.
Papageorgiou
,
S.
Fischer
,
A.
Wiengarten
,
S.
Joshi
,
K.
Seufert
,
D.
Écija
,
W.
Auwärter
, and
J. V.
Barth
, “
Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111)
,”
J. Chem. Phys.
138
,
154710
(
2013
).
111.
S. A.
Krasnikov
,
N. N.
Sergeeva
,
M. M.
Brzhezinskaya
,
A. B.
Preobrajenski
,
Y. N.
Sergeeva
,
N. A.
Vinogradov
,
A. A.
Cafolla
,
M. O.
Senge
, and
A. S.
Vinogradov
, “
An X-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin
,”
J. Phys.: Condens. Matter
20
,
235207
(
2008
).
112.
C.
Venturella
,
C.
Hillenbrand
,
J.
Li
, and
T.
Zhu
, “
Machine learning many-body Green’s functions for molecular excitation spectra
,”
J. Chem. Theory Comput.
20
,
143
154
(
2024
).
113.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
114.
J.
Brabec
,
L.
Lin
,
M.
Shao
,
N.
Govind
,
C.
Yang
,
Y.
Saad
, and
E. G.
Ng
, “
Efficient algorithms for estimating the absorption spectrum within linear response TDDFT
,”
J. Chem. Theory Comput.
11
,
5197
5208
(
2015
).
115.
J.
Schirmer
,
A. B.
Trofimov
,
K. J.
Randall
,
J.
Feldhaus
,
A. M.
Bradshaw
,
Y.
Ma
,
C. T.
Chen
, and
F.
Sette
, “
K-shell excitation of the water, ammonia, and methane molecules using high-resolution photoabsorption spectroscopy
,”
Phys. Rev. A
47
,
1136
1147
(
1993
).
116.
M.
Tronc
,
G. C.
King
, and
F. H.
Read
, “
Carbon K-shell excitation in small molecules by high-resolution electron impact
,”
J. Phys. B: At. Mol. Phys.
12
,
137
157
(
1979
).
117.
A. p.
Hitchcock
and
C. e.
Brion
, “
K-shell excitation spectra of CO, N2 and O2
,”
J. Electron Spectrosc. Relat. Phenom.
18
,
1
21
(
1980
).
118.
Y.
Ma
,
C. T.
Chen
,
G.
Meigs
,
K.
Randall
, and
F.
Sette
, “
High-resolution K-shell photoabsorption measurements of simple molecules
,”
Phys. Rev. A
44
,
1848
1858
(
1991
).
119.
M.
Tronc
,
G. C.
King
, and
F. H.
Read
, “
Nitrogen K-shell excitation in N2, NO and N2O by high-resolution electron energy-loss spectroscopy
,”
J. Phys. B: At., Mol. Opt. Phys.
13
,
999
1008
(
1980
).
120.
J.
Yu
,
Y.
Mei
,
Z.
Chen
,
Y.
Fan
, and
W.
Yang
, “
Accurate prediction of core-level binding energies from ground-state density functional calculations: The importance of localization and screening
,”
J. Phys. Chem. Lett.
16
,
2492
2500
(
2025
).
121.
G.
Polzonetti
,
V.
Carravetta
,
G.
Iucci
,
A.
Ferri
,
G.
Paolucci
,
A.
Goldoni
,
P.
Parent
,
C.
Laffon
, and
M. V.
Russo
, “
Electronic structure of platinum complex/Zn-porphyrinato assembled macrosystems, related precursors and model molecules, as probed by X-ray absorption spectroscopy (NEXAFS): Theory and experiment
,”
Chem. Phys.
296
,
87
100
(
2004
).
122.
2 × Intel® Xeon® Platinum 8268 CPU @ 2.90GHz.
123.
J.
Li
and
T.
Zhu
, “
Restoring translational symmetry in periodic all-orbital dynamical mean-field theory simulations
,”
Faraday Discuss.
254
,
641
(
2024
).
124.
J.
Li
and
T.
Zhu
, “
Interacting-bath dynamical embedding for capturing nonlocal electron correlation in solids
,”
Phys. Rev. Lett.
133
,
216402
(
2024
).
125.
O.
Çaylak
and
B.
Baumeier
, “
Machine learning of quasiparticle energies in molecules and clusters
,”
J. Chem. Theory Comput.
17
,
4891
4900
(
2021
).
126.
C.
Venturella
,
J.
Li
,
C.
Hillenbrand
,
X. L.
Peralta
,
J.
Liu
, and
T.
Zhu
, “
Unified deep learning framework for many-body quantum chemistry via Green’s functions
,” arXiv:2407.20384 (
2024
).
127.
T.
Biswas
,
A.
Gupta
, and
A. K.
Singh
, “
Many-body physics and machine learning enabled discovery of promising solar materials
,”
RSC Adv.
15
,
8253
8261
(
2025
).
128.
L.
Reichel
,
M. M.
Spalević
, and
T.
Tang
, “
Generalized averaged Gauss quadrature rules for the approximation of matrix functionals
,”
BIT Numer. Math.
56
,
1045
1067
(
2015
).
You do not currently have access to this content.