Photoconvertible fluorescent proteins (pcFPs) have enabled exquisite images of cellular structures due to their genetic encodability and red-shifted emission with high brightness, hence receiving increased traction in the field. However, the red form of Kaede-like pcFPs after photoconversion remains underexplored. We implemented ultrafast electronic and vibrational spectroscopies on the red Kaede chromophore in solution vs the protein pocket of the least-evolved ancestor (LEA, a Kaede-like green-to-red pcFP) to gain crucial insights into the photophysical processes of the chromophore. The measured fluorescence quantum yield (FQY) values were correlated with ultrafast dynamics to reveal that hydrogen-bonding interactions with the solvent can quench the excited-state Kaede in solution. A viscosity-dependent sub-ps decay indicates nonradiative relaxation involving swift chromophore conformational motions. Femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) reveal an additional ∼1 ps decay of the photoconverted red form of LEA that is absent in green LEA before photoconversion. Transient structural dynamics from FSRS elucidate this decay to involve the phenolate and imidazolinone ring twists that are implicated during cistrans isomerization and onoff photoswitching in phototransformable fluorescent proteins (FPs). Compared to green-emitting species, the FQY of red LEA (∼0.58) and many other red FPs are often reduced, limiting their applications in modern bioimaging techniques. By shining more light on the often overlooked photoconverted form of pcFPs with ultrafast spectroscopies, we envision such essential mechanistic insights to enable a bottom-up approach for rationally improving the brightness of red-emitting LEA and many other controllable bioprobes, including FPs.

1.
G. H.
Patterson
and
J.
Lippincott-Schwartz
, “
A photoactivatable GFP for selective photolabeling of proteins and cells
,”
Science
297
,
1873
1877
(
2002
).
2.
V.
Adam
,
R.
Berardozzi
,
M.
Byrdin
, and
D.
Bourgeois
, “
Phototransformable fluorescent proteins: Future challenges
,”
Curr. Opin. Chem. Biol.
20
,
92
102
(
2014
).
3.
A.
Acharya
,
A. M.
Bogdanov
,
B. L.
Grigorenko
,
K. B.
Bravaya
,
A. V.
Nemukhin
,
K. A.
Lukyanov
, and
A. I.
Krylov
, “
Photoinduced chemistry in fluorescent proteins: Curse or blessing?
,”
Chem. Rev.
117
,
758
795
(
2017
).
4.
R.
Ando
,
H.
Hama
,
M.
Yamamoto-Hino
,
H.
Mizuno
, and
A.
Miyawaki
, “
An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12651
12656
(
2002
).
5.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
, “
Imaging intracellular fluorescent proteins at nanometer resolution
,”
Science
313
,
1642
1645
(
2006
).
6.
W. E.
Moerner
, “
New directions in single-molecule imaging and analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
12596
12602
(
2007
).
7.
M.
Fernández-Suárez
and
A. Y.
Ting
, “
Fluorescent probes for super-resolution imaging in living cells
,”
Nat. Rev. Mol. Cell Biol.
9
,
929
943
(
2008
).
8.
D. M.
Chudakov
,
M. V.
Matz
,
S.
Lukyanov
, and
K. A.
Lukyanov
, “
Fluorescent proteins and their applications in imaging living cells and tissues
,”
Physiol. Rev.
90
,
1103
1163
(
2010
).
9.
P.
Dedecker
,
F. C.
De Schryver
, and
J.
Hofkens
, “
Fluorescent proteins: Shine on, you crazy diamond
,”
J. Am. Chem. Soc.
135
,
2387
2402
(
2013
).
10.
R. M.
Wachter
,
J. L.
Watkins
, and
H.
Kim
, “
Mechanistic diversity of red fluorescence acquisition by GFP-like proteins
,”
Biochemistry
49
,
7417
7427
(
2010
).
11.
H.
Kim
,
T. J.
Grunkemeyer
,
C.
Modi
,
L.
Chen
,
R.
Fromme
,
M. V.
Matz
, and
R. M.
Wachter
, “
Acid–base catalysis and crystal structures of a least evolved ancestral GFP-like protein undergoing green-to-red photoconversion
,”
Biochemistry
52
,
8048
8059
(
2013
).
12.
K.
Nienhaus
and
G.
Ulrich Nienhaus
, “
Fluorescent proteins for live-cell imaging with super-resolution
,”
Chem. Soc. Rev.
43
,
1088
1106
(
2014
).
13.
S.
Ivanchenko
,
C.
Röcker
,
F.
Oswald
,
J.
Wiedenmann
, and
G. U.
Nienhaus
, “
Targeted green-red photoconversion of EosFP, a fluorescent marker protein
,”
J. Biol. Phys.
31
,
249
259
(
2005
).
14.
S.
Habuchi
,
H.
Tsutsui
,
A. B.
Kochaniak
,
A.
Miyawaki
, and
A. M.
van Oijen
, “
mKikGR, a monomeric photoswitchable fluorescent protein
,”
PLoS One
3
,
e3944
(
2008
).
15.
V.
Adam
,
M.
Lelimousin
,
S.
Boehme
,
G.
Desfonds
,
K.
Nienhaus
,
M. J.
Field
,
J.
Wiedenmann
,
S.
McSweeney
,
G. U.
Nienhaus
, and
D.
Bourgeois
, “
Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
18343
18348
(
2008
).
16.
V.
Adam
,
K.
Nienhaus
,
D.
Bourgeois
, and
G. U.
Nienhaus
, “
Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2
,”
Biochemistry
48
,
4905
4915
(
2009
).
17.
A. L.
McEvoy
,
H.
Hoi
,
M.
Bates
,
E.
Platonova
,
P. J.
Cranfill
,
M. A.
Baird
,
M. W.
Davidson
,
H.
Ewers
,
J.
Liphardt
, and
R. E.
Campbell
, “
mMaple: A photoconvertible fluorescent protein for use in multiple imaging modalities
,”
PLoS One
7
,
e51314
(
2012
).
18.
J.-P.
Colletier
,
M.
Sliwa
,
F.-X.
Gallat
,
M.
Sugahara
,
V.
Guillon
,
G.
Schirò
,
N.
Coquelle
,
J.
Woodhouse
,
L.
Roux
,
G.
Gotthard
,
A.
Royant
,
L. M.
Uriarte
,
C.
Ruckebusch
,
Y.
Joti
,
M.
Byrdin
,
E.
Mizohata
,
E.
Nango
,
T.
Tanaka
,
K.
Tono
,
M.
Yabashi
,
V.
Adam
,
M.
Cammarata
,
I.
Schlichting
,
D.
Bourgeois
, and
M.
Weik
, “
Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP
,”
J. Phys. Chem. Lett.
7
,
882
887
(
2016
).
19.
E.
De Zitter
,
J.
Ridard
,
D.
Thédié
,
V.
Adam
,
B.
Lévy
,
M.
Byrdin
,
G.
Gotthard
,
L.
Van Meervelt
,
P.
Dedecker
,
I.
Demachy
, and
D.
Bourgeois
, “
Mechanistic investigations of green mEos4b reveal a dynamic long-lived dark state
,”
J. Am. Chem. Soc.
142
,
10978
10988
(
2020
).
20.
K.
Nienhaus
and
G. U.
Nienhaus
, “
Fluorescent proteins of the EosFP clade: Intriguing marker tools with multiple photoactivation modes for advanced microscopy
,”
RSC Chem. Biol.
2
,
796
814
(
2021
).
21.
A.
Maity
,
J.
Wulffelé
,
I.
Ayala
,
A.
Favier
,
V.
Adam
,
D.
Bourgeois
, and
B.
Brutscher
, “
Structural heterogeneity in a phototransformable fluorescent protein impacts its photochemical properties
,”
Adv. Sci.
11
,
2306272
(
2024
).
22.
C.
Fang
and
L.
Tang
, “
Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy
,”
Annu. Rev. Phys. Chem.
71
,
239
265
(
2020
).
23.
L.
Tang
and
C.
Fang
, “
Fluorescence modulation by ultrafast chromophore twisting events: Developing a powerful toolset for fluorescent-protein-based imaging
,”
J. Phys. Chem. B
125
,
13610
13623
(
2021
).
24.
O.
Shimomura
,
F. H.
Johnson
, and
Y.
Saiga
, “
Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea
,”
J. Cell. Comp. Physiol.
59
,
223
239
(
1962
).
25.
M.
Chalfie
,
Y.
Tu
,
G.
Euskirchen
,
W. W.
Ward
, and
D. C.
Prasher
, “
Green fluorescent protein as a marker for gene expression
,”
Science
263
,
802
805
(
1994
).
26.
R. Y.
Tsien
, “
The green fluorescent protein
,”
Annu. Rev. Biochem.
67
,
509
544
(
1998
).
27.
M.
Zimmer
, “
GFP: From jellyfish to the Nobel prize and beyond
,”
Chem. Soc. Rev.
38
,
2823
2832
(
2009
).
28.
D.
Mandal
,
T.
Tahara
, and
S. R.
Meech
, “
Excited-state dynamics in the green fluorescent protein chromophore
,”
J. Phys. Chem. B
108
,
1102
1108
(
2004
).
29.
M.
Vengris
,
I. H. M.
van Stokkum
,
X.
He
,
A. F.
Bell
,
P. J.
Tonge
,
R.
van Grondelle
, and
D. S.
Larsen
, “
Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution
,”
J. Phys. Chem. A
108
,
4587
4598
(
2004
).
30.
M. A.
Taylor
,
L.
Zhu
,
N. D.
Rozanov
,
K. T.
Stout
,
C.
Chen
, and
C.
Fang
, “
Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection
,”
Phys. Chem. Chem. Phys.
21
,
9728
9739
(
2019
).
31.
C.
Chen
,
L.
Zhu
,
S. A.
Boulanger
,
N. S.
Baleeva
,
I. N.
Myasnyanko
,
M. S.
Baranov
, and
C.
Fang
, “
Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores
,”
J. Chem. Phys.
152
,
021101
(
2020
).
32.
C. M.
Jones
,
N. H.
List
, and
T. J.
Martínez
, “
Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water
,”
Chem. Sci.
12
,
11347
11363
(
2021
).
33.
S. A.
Boulanger
,
C.
Chen
,
L.
Tang
,
L.
Zhu
,
N. S.
Baleeva
,
I. N.
Myasnyanko
,
M. S.
Baranov
, and
C.
Fang
, “
Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state
,”
Phys. Chem. Chem. Phys.
23
,
14636
14648
(
2021
).
34.
C.
Fang
,
R. R.
Frontiera
,
R.
Tran
, and
R. A.
Mathies
, “
Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy
,”
Nature
462
,
200
204
(
2009
).
35.
J. W.
Park
and
Y. M.
Rhee
, “
Electric field keeps chromophore planar and produces high yield fluorescence in green fluorescent protein
,”
J. Am. Chem. Soc.
138
,
13619
13629
(
2016
).
36.
M. G.
Romei
,
C.-Y.
Lin
,
I. I.
Mathews
, and
S. G.
Boxer
, “
Electrostatic control of photoisomerization pathways in proteins
,”
Science
367
,
76
79
(
2020
).
37.
I. V.
Yampolsky
,
A. A.
Kislukhin
,
T. T.
Amatov
,
D.
Shcherbo
,
V. K.
Potapov
,
S.
Lukyanov
, and
K. A.
Lukyanov
, “
Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs
,”
Bioorg. Chem.
36
,
96
104
(
2008
).
38.
C.
Chen
,
J. N.
Henderson
,
D. A.
Ruchkin
,
J. M.
Kirsh
,
M. S.
Baranov
,
A. M.
Bogdanov
,
J. H.
Mills
,
S. G.
Boxer
, and
C.
Fang
, “
Structural characterization of fluorescent proteins using tunable femtosecond stimulated Raman spectroscopy
,”
Int. J. Mol. Sci.
24
,
11991
(
2023
).
39.
K.
Addison
,
P.
Roy
,
G.
Bressan
,
K.
Skudaite
,
J.
Robb
,
P. C.
Bulman Page
,
E. K.
Ashworth
,
J. N.
Bull
, and
S. R.
Meech
, “
Photophysics of the red-form Kaede chromophore
,”
Chem. Sci.
14
,
3763
3775
(
2023
).
40.
T. D.
Krueger
,
C.
Chen
, and
C.
Fang
, “
Targeting ultrafast spectroscopic insights into red fluorescent proteins
,”
Chem. - Asian J.
18
,
e202300668
(
2023
).
41.
A.
Fatima
,
G.
Bressan
,
E. K.
Ashworth
,
P. C. B.
Page
,
J. N.
Bull
, and
S. R.
Meech
, “
Substituent effects on the photophysics of the Kaede chromophore
,”
Phys. Chem. Chem. Phys.
26
,
29048
29059
(
2024
).
42.
X.
Li
,
L. W.
Chung
,
H.
Mizuno
,
A.
Miyawaki
, and
K.
Morokuma
, “
Competitive mechanistic pathways for green-to-red photoconversion in the fluorescent protein Kaede: A computational study
,”
J. Phys. Chem. B
114
,
16666
16675
(
2010
).
43.
M.
Chattoraj
,
B. A.
King
,
G. U.
Bublitz
, and
S. G.
Boxer
, “
Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
8362
8367
(
1996
).
44.
S.
Habuchi
,
R.
Ando
,
P.
Dedecker
,
W.
Verheijen
,
H.
Mizuno
,
A.
Miyawaki
, and
J.
Hofkens
, “
Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
9511
9516
(
2005
).
45.
M.
Andresen
,
A. C.
Stiel
,
S.
Trowitzsch
,
G.
Weber
,
C.
Eggeling
,
M. C.
Wahl
,
S. W.
Hell
, and
S.
Jakobs
, “
Structural basis for reversible photoswitching in Dronpa
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
13005
13009
(
2007
).
46.
D.
Bourgeois
and
V.
Adam
, “
Reversible photoswitching in fluorescent proteins: A mechanistic view
,”
IUBMB Life
64
,
482
491
(
2012
).
47.
X. X.
Zhou
and
M. Z.
Lin
, “
Photoswitchable fluorescent proteins: Ten years of colorful chemistry and exciting applications
,”
Curr. Opin. Chem. Biol.
17
,
682
690
(
2013
).
48.
L.
Tang
and
C.
Fang
, “
Photoswitchable fluorescent proteins: Mechanisms on ultrafast timescales
,”
Int. J. Mol. Sci.
23
,
6459
(
2022
).
49.
H.
Kim
,
T.
Zou
,
C.
Modi
,
K.
Dörner
,
T. J.
Grunkemeyer
,
L.
Chen
,
R.
Fromme
,
M. V.
Matz
,
S. B.
Ozkan
, and
R. M.
Wachter
, “
A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins
,”
Structure
23
,
34
43
(
2015
).
50.
T. D.
Krueger
,
L.
Tang
,
L.
Zhu
,
I. L.
Breen
,
R. M.
Wachter
, and
C.
Fang
, “
Dual illumination enhances transformation of an engineered green-to-red photoconvertible fluorescent protein
,”
Angew. Chem., Int. Ed.
59
,
1644
1652
(
2020
).
51.
T. D.
Krueger
,
J. N.
Henderson
,
I. L.
Breen
,
L.
Zhu
,
R. M.
Wachter
,
J. H.
Mills
, and
C.
Fang
, “
Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins
,”
Front. Chem.
11
,
1328081
(
2023
).
52.
T. D.
Krueger
,
L.
Tang
,
C.
Chen
,
L.
Zhu
,
I. L.
Breen
,
R. M.
Wachter
, and
C.
Fang
, “
To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins
,”
Protein Sci.
32
,
e4517
(
2023
).
53.
B.
Breen
,
J. P.
Whitelegge
, and
R. M.
Wachter
, “
Kinetic isotope effect reveals rate-limiting step in green-to-red photoconvertible fluorescent proteins
,”
Protein Sci.
33
,
e5069
(
2024
).
54.
F. V.
Subach
and
V. V.
Verkhusha
, “
Chromophore transformations in red fluorescent proteins
,”
Chem. Rev.
112
,
4308
4327
(
2012
).
55.
M. J.
Kamlet
,
J.-L. M.
Abboud
,
M. H.
Abraham
, and
R. W.
Taft
, “
Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation
,”
J. Org. Chem.
48
,
2877
2887
(
1983
).
56.
C.
Reichardt
and
T.
Welton
,
Solvents and Solvent Effects in Organic Chemistry
, 4th ed. (
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2011
), p.
718
.
57.
J.-S.
Yang
,
G.-J.
Huang
,
Y.-H.
Liu
, and
S.-M.
Peng
, “
Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues
,”
Chem. Commun.
2008
,
1344
1346
.
58.
T.
Kumpulainen
,
B.
Lang
,
A.
Rosspeintner
, and
E.
Vauthey
, “
Ultrafast elementary photochemical processes of organic molecules in liquid solution
,”
Chem. Rev.
117
,
10826
10939
(
2017
).
59.
C.
Fang
,
L.
Tang
, and
C.
Chen
, “
Unveiling coupled electronic and vibrational motions of chromophores in condensed phases
,”
J. Chem. Phys.
151
,
200901
(
2019
).
60.
J. J.
Snellenburg
,
S. P.
Laptenok
,
R.
Seger
,
K. M.
Mullen
, and
I. H. M. v.
Stokkum
, “
Glotaran: A Java-based graphical user interface for the R package TIMP
,”
J. Stat. Software
49
,
1
22
(
2012
).
61.
C.
Chen
,
S. A.
Boulanger
,
A. I.
Sokolov
,
M. S.
Baranov
, and
C.
Fang
, “
A novel dialkylamino GFP chromophore as an environment-polarity sensor reveals the role of twisted intramolecular charge transfer
,”
Chemosensors
9
,
234
(
2021
).
62.
A.
Fadini
,
C. D. M.
Hutchison
,
D.
Morozov
,
J.
Chang
,
K.
Maghlaoui
,
S.
Perrett
,
F.
Luo
,
J. C. X.
Kho
,
M. G.
Romei
,
R. M. L.
Morgan
,
C. M.
Orr
,
V.
Cordon-Preciado
,
T.
Fujiwara
,
N.
Nuemket
,
T.
Tosha
,
R.
Tanaka
,
S.
Owada
,
K.
Tono
,
S.
Iwata
,
S. G.
Boxer
,
G.
Groenhof
,
E.
Nango
, and
J. J.
van Thor
, “
Serial femtosecond crystallography reveals that photoactivation in a fluorescent protein proceeds via the hula twist mechanism
,”
J. Am. Chem. Soc.
145
,
15796
15808
(
2023
).
63.
S. P.
Laptenok
,
A. A.
Gil
,
C. R.
Hall
,
A.
Lukacs
,
J. N.
Iuliano
,
G. A.
Jones
,
G. M.
Greetham
,
P.
Donaldson
,
A.
Miyawaki
,
P. J.
Tonge
, and
S. R.
Meech
, “
Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype Dronpa
,”
Nat. Chem.
10
,
845
852
(
2018
).
64.
N.
Coquelle
,
M.
Sliwa
,
J.
Woodhouse
,
G.
Schirò
,
V.
Adam
,
A.
Aquila
,
T. R. M.
Barends
,
S.
Boutet
,
M.
Byrdin
,
S.
Carbajo
,
E.
De la Mora
,
R. B.
Doak
,
M.
Feliks
,
F.
Fieschi
,
L.
Foucar
,
V.
Guillon
,
M.
Hilpert
,
M. S.
Hunter
,
S.
Jakobs
,
J. E.
Koglin
,
G.
Kovacsova
,
T. J.
Lane
,
B.
Lévy
,
M.
Liang
,
K.
Nass
,
J.
Ridard
,
J. S.
Robinson
,
C. M.
Roome
,
C.
Ruckebusch
,
M.
Seaberg
,
M.
Thepaut
,
M.
Cammarata
,
I.
Demachy
,
M.
Field
,
R. L.
Shoeman
,
D.
Bourgeois
,
J.-P.
Colletier
,
I.
Schlichting
, and
M.
Weik
, “
Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography
,”
Nat. Chem.
10
,
31
37
(
2018
).
65.
K. L.
Litvinenko
,
N. M.
Webber
, and
S. R.
Meech
, “
Internal conversion in the chromophore of the green fluorescent protein: Temperature dependence and isoviscosity analysis
,”
J. Phys. Chem. A
107
,
2616
2623
(
2003
).
66.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
, “
Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited
,”
J. Phys. Chem.
99
,
17311
17337
(
1995
).
67.
J. L.
McHale
,
Molecular Spectroscopy
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1999
).
68.
R. M.
Hill
and
L. A.
Dissado
, “
Debye and non-Debye relaxation
,”
J. Phys. C: Solid State Phys.
18
,
3829
(
1985
).
69.
M.
Maroncelli
,
J.
Macinnis
, and
G. R.
Fleming
, “
Polar solvent dynamics and electron-transfer reactions
,”
Science
243
,
1674
1681
(
1989
).
70.
H.
Betting
and
M.
Stockhausen
, “
Dielectric relaxation of hexadeutero dimethylsulfoxide
,”
Z. Naturforsch. A
54
,
661
(
1999
).
71.
A.
Beneduci
, “
Which is the effective time scale of the fast Debye relaxation process in water?
,”
J. Mol. Liq.
138
,
55
60
(
2008
).
72.
C.
Wang
,
W.
Chi
,
Q.
Qiao
,
D.
Tan
,
Z.
Xu
, and
X.
Liu
, “
Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores
,”
Chem. Soc. Rev.
50
,
12656
12678
(
2021
).
73.
P.
Altoè
,
F.
Bernardi
,
M.
Garavelli
,
G.
Orlandi
, and
F.
Negri
, “
Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: A quantum-chemical study
,”
J. Am. Chem. Soc.
127
,
3952
3963
(
2005
).
74.
R.
Simkovitch
,
S.
Shomer
,
R.
Gepshtein
, and
D.
Huppert
, “
How fast can a proton-transfer reaction be beyond the solvent-control limit?
,”
J. Phys. Chem. B
119
,
2253
2262
(
2015
).
75.
P.
Verma
,
A.
Rosspeintner
,
B.
Dereka
,
E.
Vauthey
, and
T.
Kumpulainen
, “
Broadband fluorescence reveals mechanistic differences in excited-state proton transfer to protic and aprotic solvents
,”
Chem. Sci.
11
,
7963
7971
(
2020
).
76.
L.
Tang
,
S.
Zhang
,
Y.
Zhao
,
N. D.
Rozanov
,
L.
Zhu
,
J.
Wu
,
R. E.
Campbell
, and
C.
Fang
, “
Switching between ultrafast pathways enables a green-red emission ratiometric fluorescent-protein-based Ca2+ biosensor
,”
Int. J. Mol. Sci.
22
,
445
(
2021
).
77.
T. D.
Krueger
,
L.
Tang
, and
C.
Fang
, “
Delineating ultrafast structural dynamics of a green-red fluorescent protein for calcium sensing
,”
Biosensors
13
,
218
(
2023
).
78.
R. M.
Wachter
, “
Photoconvertible fluorescent proteins and the role of dynamics in protein evolution
,”
Int. J. Mol. Sci.
18
,
1792
(
2017
).
79.
R.
Ando
,
C.
Flors
,
H.
Mizuno
,
J.
Hofkens
, and
A.
Miyawaki
, “
Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants
,”
Biophys. J.
92
,
L97
L99
(
2007
).
80.
R.
Englman
and
J.
Jortner
, “
The energy gap law for radiationless transitions in large molecules
,”
Mol. Phys.
18
,
145
164
(
1970
).
81.
D. R.
Dietze
and
R. A.
Mathies
, “
Femtosecond stimulated Raman spectroscopy
,”
ChemPhysChem
17
,
1224
1251
(
2016
).
82.
R. R.
Frontiera
,
S.
Shim
, and
R. A.
Mathies
, “
Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy
,”
J. Chem. Phys.
129
,
064507
(
2008
).
83.
B. G.
Oscar
,
C.
Chen
,
W.
Liu
,
L.
Zhu
, and
C.
Fang
, “
Dynamic Raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated Raman spectroscopy
,”
J. Phys. Chem. A
121
,
5428
5441
(
2017
).
84.
G.
Batignani
,
C.
Ferrante
,
G.
Fumero
,
M.
Martinati
, and
T.
Scopigno
, “
Femtosecond stimulated Raman spectroscopy
,”
Nat. Rev. Methods Primers
4
,
34
(
2024
).
85.
E. R.
Lorenzo
,
B.
Karki
,
K. E.
White
,
K. H.
Burns
, and
C. G.
Elles
, “
Tunable FSRS measurements with reduced background signals: Using an etalon filter to generate picosecond pump pulses in the 460–650 nm range
,”
J. Chem. Phys.
161
,
224201
(
2024
).
86.
P.
Abbyad
,
W.
Childs
,
X.
Shi
, and
S. G.
Boxer
, “
Dynamic Stokes shift in green fluorescent protein variants
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
20189
20194
(
2007
).
You do not currently have access to this content.