In this study, we propose a theoretical framework to explore the interactions between flexible polymer chains, specifically polyelectrolytes (PEs). Our analysis reaffirms that the thermodynamic drive for complex coacervation is influenced by key factors such as the number of ions bound to the polymer backbone and the entropy associated with free ions. By calculating the free energy of the system while considering position-dependent mutual interactions and chain conformations, we gain valuable insights into the local dielectricity as PEs overlap. Our findings indicate that global thermodynamic behavior is significantly shaped by local factors such as dielectric constant, providing an explanation for the discrepancies observed between experimental and computational studies. In addition, we found that entropy gain is inversely proportional to the local dielectric constant, provided that the electrostatic temperature remains constant. This relationship underscores the importance of polymer-specific parameters when examining the thermodynamic behavior of charged polymer complexation.

1.
J. T. G.
Overbeek
and
M. J.
Voorn
, “
Phase separation in polyelectrolyte solutions. Theory of complex coacervation
,”
J. Cell. Comp. Physiol.
49
(
5
),
7
26
(
1957
).
2.
V. Yu.
Borue
and
I. Ya.
Erukhimovich
, “
A statistical theory of weakly charged polyelectrolytes: Fluctuations, equation of state and microphase separation
,”
Macromolecules
21
(
11
),
3240
3249
(
1988
).
3.
V. Yu.
Borue
and
I. Ya.
Erukhimovich
, “
A statistical theory of globular polyelectrolyte complexes
,”
Macromolecules
23
(
15
),
3625
3632
(
1990
).
4.
K. A.
Mahdi
and
M.
Olvera de la Cruz
, “
Phase diagrams of salt-free polyelectrolyte semidilute solutions
,”
Macromolecules
33
(
20
),
7649
7654
(
2000
).
5.
M.
Castelnovo
and
J.-F.
Joanny
, “
Complexation between oppositely charged polyelectrolytes: Beyond the random phase approximation
,”
Eur. Phys. J. E
6
(
1
),
377
386
(
2001
).
6.
A. V.
Ermoshkin
and
M.
Olvera de la Cruz
, “
A modified random phase approximation of polyelectrolyte solutions
,”
Macromolecules
36
(
20
),
7824
7832
(
2003
).
7.
A.
Kudlay
,
A. V.
Ermoshkin
, and
M.
Olvera de la Cruz
, “
Complexation of oppositely charged polyelectrolytes: Effect of ion pair formation
,”
Macromolecules
37
(
24
),
9231
9241
(
2004
).
8.
A.
Kudlay
and
M.
Olvera de la Cruz
, “
Precipitation of oppositely charged polyelectrolytes in salt solutions
,”
J. Chem. Phys.
120
(
1
),
404
412
(
2004
).
9.
N. N.
Oskolkov
and
I. I.
Potemkin
, “
Complexation in asymmetric solutions of oppositely charged polyelectrolytes: Phase diagram
,”
Macromolecules
40
(
23
),
8423
8429
(
2007
).
10.
S. L.
Perry
and
C. E.
Sing
, “
PRISM-based theory of complex coacervation: Excluded volume versus chain correlation
,”
Macromolecules
48
(
14
),
5040
5053
(
2015
).
11.
A.
Salehi
and
R. G.
Larson
, “
A molecular thermodynamic model of complexation in mixtures of oppositely charged polyelectrolytes with explicit account of charge association/dissociation
,”
Macromolecules
49
(
24
),
9706
9719
(
2016
).
12.
C. E.
Sing
, “
Development of the modern theory of polymeric complex coacervation
,”
Adv. Colloid Interface Sci.
239
,
2
16
(
2017
) Complex Coacervation: Principles and Applications.
13.
K. L.
Tyler
and
C. E.
Sing
, “
Transfer matrix theory of polymer complex coacervation
,”
Soft Matter
13
(
39
),
7001
7012
(
2017
).
14.
S.
Adhikari
,
M. A.
Leaf
, and
M.
Muthukumar
, “
Polyelectrolyte complex coacervation by electrostatic dipolar interactions
,”
J. Chem. Phys.
149
(
16
),
163308
(
2018
).
15.
A. M.
Rumyantsev
and
I. I.
Potemkin
, “
Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach
,”
Phys. Chem. Chem. Phys.
19
(
40
),
27580
27592
(
2017
).
16.
M.
Rubinstein
,
L.
Qi
, and
S.
Panyukov
, “
Structure of liquid coacervates formed by oppositely charged polyelectrolytes
,”
Macromolecules
51
(
23
),
9572
9588
(
2018
).
17.
T. K.
Lytle
et al, “
Designing electrostatic interactions via polyelectrolyte monomer sequence
,”
ACS Cent. Sci.
5
(
4
),
709
718
(
2019
).
18.
P.
Zhang
et al, “
Polyelectrolyte complex coacervation: Effects of concentration asymmetry
,”
J. Chem. Phys.
149
(
16
),
163303
(
2018
).
19.
A. S.
Ylitalo
et al, “
Electrostatic correlations and temperature-dependent dielectric constant can model LCST in polyelectrolyte complex coacervation
,”
Macromolecules
54
(
24
),
11326
11337
(
2021
).
20.
F.
Wang
,
X.
Xu
, and
S.
Zhao
, “
Complex coacervation in asymmetric solutions of polycation and polyanion
,”
Langmuir
35
(
47
),
15267
15274
(
2019
).
21.
A. M.
Rumyantsev
,
E. Yu.
Kramarenko
, and
O. V.
Borisov
, “
Microphase separation in complex coacervate due to incompatibility between polyanion and polycation
,”
Macromolecules
51
(
17
),
6587
6601
(
2018
).
22.
A. M.
Rumyantsev
et al, “
Controlling complex coacervation via random polyelectrolyte sequences
,”
ACS Macro Lett.
8
(
10
),
1296
1302
(
2019
).
23.
X.
Chen
et al, “
Multiphase coacervates driven by electrostatic correlations
,”
ACS Macro Lett.
10
(
8
),
1041
1047
(
2021
).
24.
A. R.
Knoerdel
,
W. C.
Blocher McTigue
, and
C. E.
Sing
, “
Transfer matrix model of pH effects in polymeric complex coacervation
,”
J. Phys. Chem. B
125
(
31
),
8965
8980
(
2021
).
25.
S.
Ryan
et al, “
Charged polymers: From polyelectrolyte solutions to polyelectrolyte complexes
,”
Macromolecules
54
(
15
),
7183
7192
(
2021
).
26.
S.
Mitra
and
A.
Kundagrami
, “
Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory
,”
J. Chem. Phys.
158
(
1
),
014904
(
2023
).
27.
S.
Ghosh
,
S.
Mitra
, and
A.
Kundagrami
, “
Polymer complexation: Partially ionizable asymmetric polyelectrolytes
,”
J. Chem. Phys.
158
(
20
),
204903
(
2023
).
28.
S.
Chen
and
Z.-G.
Wang
. “
Driving force and pathway in polyelectrolyte complex coacervation
.”
Proc. Natl. Acad. Sci. U. S. A.
119
(
36
) (
2022
)
e2209975119
.
29.
M. T.
Record
, Jr
,
C. F.
Anderson
, and
T. M.
Lohman
, “
Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: The roles of ion association or release, screening, and ion effects on water activity
,”
Q. Rev. Biophys.
11
(
2
),
103
178
(
1978
).
30.
V. A.
Kabanov
et al, “
Cooperative interpolyelectrolyte reactions
,”
Die Makromol. Chem.
13
(
S19851
),
137
155
(
1985
).
31.
H.
Dautzenberg
and
W.
Jaeger
, “
Effect of charge density on the formation and salt stability of polyelectrolyte complexes
,”
Macromol. Chem. Phys.
203
(
14
),
2095
2102
(
2002
).
32.
F.
Cousin
et al, “
Polyelectrolyte-protein complexes: Structure and conformation of each species revealed by SANS
,”
Langmuir
21
(
21
),
9675
9688
(
2005
).
33.
J.
Gummel
,
F.
Cousin
, and
F.
Boué
, “
Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: A direct measurement
,”
J. Am. Chem. Soc.
129
(
18
),
5806
5807
(
2007
).
34.
C. H.
Porcel
and
J. B.
Schlenoff
, “
Compact polyelectrolyte complexes: “Saloplastic” candidates for biomaterials
,”
Biomacromolecules
10
(
15
),
2968
2975
(
2009
).
35.
E.
Spruijt
et al, “
Binodal compositions of polyelectrolyte complexes
,”
Macromolecules
43
(
15
),
6476
6484
(
2010
).
36.
R.
Chollakup
et al, “
Phase behavior and coacervation of aqueous poly(acrylic acid)-poly(allylamine) solutions
,”
Macromolecules
43
(
5
),
2518
2528
(
2010
).
37.
J.
van der Gucht
et al, “
Polyelectrolyte complexes: Bulk phases and colloidal systems
,”
J. Colloid Interface Sci.
361
(
2
),
407
422
(
2011
).
38.
D.
Priftis
and
M.
Tirrell
, “
Phase behaviour and complex coacervation of aqueous polypeptide solutions
,”
Soft Matter
8
(
36
),
9396
9405
(
2012
).
39.
M.
Lemmers
et al, “
The influence of charge ratio on transient networks of polyelectrolyte complex micelles
,”
Soft Matter
8
(
1
),
104
117
(
2012
).
40.
J.
Wang
,
M. A.
Cohen Stuart
, and
J.
van der Gucht
, “
Phase diagram of coacervate complexes containing reversible coordination structures
,”
Macromolecules
45
(
21
),
8903
8909
(
2012
).
41.
R.
Chollakup
et al, “
Polyelectrolyte molecular weight and salt effects on the phase behavior and coacervation of aqueous solutions of poly(acrylic acid) sodium salt and poly(allylamine) hydrochloride
,”
Macromolecules
46
(
6
),
2376
2390
(
2013
).
42.
D.
Priftis
et al, “
Ternary, tunable polyelectrolyte complex fluids driven by complex coacervation
,”
Macromolecules
47
(
9
),
3076
3085
(
2014
).
43.
L.
Vitorazi
et al, “
Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation
,”
Soft Matter
10
(
47
),
9496
9505
(
2014
).
44.
S.
Perry
et al, “
The effect of salt on the complex coacervation of vinyl polyelectrolytes
,”
Polymers
6
(
6
),
1756
1772
(
2014
).
45.
S.
Ali
et al, “
Relationship between polyelectrolyte bulk complexation and kinetics of their layer-by-layer assembly
,”
Macromolecules
48
(
2
),
400
409
(
2015
).
46.
Y.
Zhang
et al, “
The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes
,”
Soft Matter
11
(
37
),
7392
7401
(
2015
).
47.
A. B.
Kayitmazer
,
A. F.
Koksal
, and
E.
Kilic Iyilik
, “
Complex coacervation of hyaluronic acid and chitosan: Effects of pH, ionic strength, charge density, chain length and the charge ratio
,”
Soft Matter
11
(
44
),
8605
8612
(
2015
).
48.
J.
Fu
and
J. B.
Schlenoff
, “
Driving forces for oppositely charged polyion association in aqueous solutions: Enthalpic, entropic, but not electrostatic
,”
J. Am. Chem. Soc.
138
(
3
),
980
990
(
2016
).
49.
V. S.
Meka
et al, “
A comprehensive review on polyelectrolyte complexes
,”
Drug Discovery Today
22
(
11
),
1697
1706
(
2017
).
50.
J.
Fu
,
H. M.
Fares
, and
J. B.
Schlenoff
, “
Ion-pairing strength in polyelectrolyte complexes
,”
Macromolecules
50
(
3
),
1066
1074
(
2017
).
51.
S.
Ali
and
V.
Prabhu
, “
Relaxation behavior by time-salt and time-temperature superpositions of polyelectrolyte complexes from coacervate to precipitate
,”
Gels
4
(
1
),
11
(
2018
).
52.
L.
Li
et al, “
Phase behavior and salt partitioning in polyelectrolyte complex coacervates
,”
Macromolecules
51
(
8
),
2988
2995
(
2018
).
53.
A. B.
Marciel
,
S.
Srivastava
, and
M. V.
Tirrell
, “
Structure and rheology of polyelectrolyte complex coacervates
,”
Soft Matter
14
(
13
),
2454
2464
(
2018
).
54.
S.
Ali
,
M.
Bleuel
, and
V. M.
Prabhu
, “
Lower critical solution temperature in polyelectrolyte complex coacervates
,”
ACS Macro Lett.
8
(
3
),
289
293
(
2019
).
55.
J. B.
Schlenoff
et al, “
Ion content of polyelectrolyte complex coacervates and the Donnan equilibrium
,”
Macromolecules
52
(
23
),
9149
9159
(
2019
).
56.
J.
Huang
,
F. J.
Morin
, and
J. E.
Laaser
, “
Charge-density-dominated phase behavior and viscoelasticity of polyelectrolyte complex coacervates
,”
Macromolecules
52
(
13
),
4957
4967
(
2019
).
57.
B.
Saha
et al, “
Unusual nanostructured morphologies enabled by interpolyelectrolyte complexation of polyions bearing incompatible nonionic segments
,”
Macromolecules
53
(
24
),
10754
10764
(
2020
).
58.
S.
Meng
et al, “
Effect of mixed solvents on polyelectrolyte complexes with salt
,”
Colloid Polym. Sci.
298
(
7
),
887
894
(
2020
).
59.
S.
Meng
et al, “
Solid-to-liquid phase transition in polyelectrolyte complexes
,”
Macromolecules
53
(
18
),
7944
7953
(
2020
).
60.
L.
Li
et al, “
Effect of solvent quality on the phase behavior of polyelectrolyte complexes
,”
Macromolecules
54
(
1
),
105
114
(
2020
).
61.
Y.
Chen
et al, “
Influence of nonstoichiometry on the viscoelastic properties of a polyelectrolyte complex
,”
Macromolecules
54
(
17
),
7890
7899
(
2021
).
62.
A. E.
Neitzel
et al, “
Polyelectrolyte complex coacervation across a broad range of charge densities
,”
Macromolecules
54
(
14
),
6878
6890
(
2021
).
63.
D.
Priftis
and
M.
Tirrell
, “
Phase behaviour and complex coacervation of aqueous polypeptide solutions
,”
Soft Matter
8
(
36
),
9396
9405
(
2012
).
64.
D.
Priftis
,
N.
Laugel
, and
M.
Tirrell
, “
Thermodynamic characterization of polypeptide complex coacervation
,”
Langmuir
28
(45), 15947–15957 (
2012
).
65.
A. V.
Subbotin
and
A. N.
Semenov
, “
The structure of polyelectrolyte complex coacervates and multilayers
,”
Macromolecules
54
(
3
),
1314
1328
(
2021
).
66.
S.
Friedowitz
et al, “
Looping-in complexation and ion partitioning in nonstoichiometric polyelectrolyte mixtures
,”
Sci. Adv.
7
(
31
),
eabg8654
(
2021
).
67.
Y.
Ma
,
S.
Ali
, and
V. M.
Prabhu
, “
Enhanced concentration fluctuations in model polyelectrolyte coacervate mixtures along a salt isopleth phase diagram
,”
Macromolecules
54
(
24
),
11338
11350
(
2021
).
68.
S. M.
Lalwani
et al, “
Relaxation times of solid-like polyelectrolyte complexes of varying pH and water content
,”
Macromolecules
54
(
17
),
7765
7776
(
2021
).
69.
Z. A.
Digby
et al, “
Salt resistance as a measure of the strength of polyelectrolyte complexation
,”
Macromolecules
55
(
3
),
978
988
(
2022
).
70.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
A Monte Carlo study of solutions of oppositely charged polyelectrolytes
,”
J. Chem. Phys.
116
(
15
),
6836
6845
(
2002
).
71.
R. G.
Winkler
,
M. O.
Steinhauser
, and
P.
Reineker
, “
Complex formation in systems of oppositely charged polyelectrolytes: A molecular dynamics simulation study
,”
Phys. Rev. E
66
,
021802
(
2002
).
72.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
Complex Formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content
,”
J. Phys. Chem. B
107
(
32
),
8198
8207
(
2003
).
73.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
Oppositely charged polyelectrolytes. Complex formation and effects of chain asymmetry
,”
J. Phys. Chem. B
108
(
39
),
15266
15277
(
2004
).
74.
R.
Zhang
and
B. I.
Shklovskii
, “
Phase diagram of solution of oppositely charged polyelectrolytes
,”
Physica A
. Physics Applied to Biological Systems,
352
(
1
),
216
238
(
2005
).
75.
Z.
Ou
and
M.
Muthukumar
, “
Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations
,”
J. Chem. Phys.
124
(
15
),
154902
(
2006
).
76.
Y. O.
Popov
,
J.
Lee
, and
G. H.
Fredrickson
, “
Field-theoretic simulations of polyelectrolyte complexation
,”
J. Polym. Sci., Part B: Polym. Phys.
45
(
24
),
3223
3230
(
2007
).
77.
N.
Hoda
and
R. G.
Larson
, “
Explicit- and implicit-solvent molecular dynamics simulations of complex formation between polycations and polyanions
,”
Macromolecules
42
(
22
),
8851
8863
(
2009
).
78.
A. A.
Lazutin
,
A. N.
Semenov
, and
V. V.
Vasilevskaya
, “
Polyelectrolyte complexes consisting of macromolecules with varied stiffness: Computer simulation
,”
Macromol. Theory Simul.
21
(
5
),
328
339
(
2012
).
79.
R. A.
Riggleman
,
R.
Kumar
, and
G. H.
Fredrickson
, “
Investigation of the interfacial tension of complex coacervates using field-theoretic simulations
,”
J. Chem. Phys.
136
(
2
),
024903
(
2012
).
80.
E.
Meneses-Juárez
et al, “
The structure and interaction mechanism of a polyelectrolyte complex: A dissipative particle dynamics study
,”
Soft Matter
11
(
29
),
5889
5897
(
2015
).
81.
B.
Peng
and
M.
Muthukumar
, “
Modeling competitive substitution in a polyelectrolyte complex
,”
J. Chem. Phys.
143
(
24
),
243133
(
2015
).
82.
T. K.
Lytle
,
M.
Radhakrishna
, and
C. E.
Sing
, “
High charge density coacervate assembly via hybrid Monte Carlo single chain in mean field theory
,”
Macromolecules
49
(
24
),
9693
9705
(
2016
).
83.
X.
Xu
et al, “
Potential of mean force and transient states in polyelectrolyte pair complexation
,”
J. Chem. Phys.
145
(
3
),
034901
(
2016
).
84.
T. D.
Kris
and
G. H.
Fredrickson
, “
Theory of polyelectrolyte complexation-complex coacervates are self-coacervates
,”
J. Chem. Phys.
146
(
22
),
224902
(
2017
).
85.
Li-W.
Chang
et al, “
Sequence and entropy-based control of complex coacervates
,”
Nat. Commun.
8
,
1273
(
2017
).
86.
M.
Radhakrishna
et al, “
Molecular connectivity and correlation effects on polymer coacervation
,”
Macromolecules
50
(
7
),
3030
3037
(
2017
).
87.
V. S.
Rathee
et al, “
Weak polyelectrolyte complexation driven by associative charging
,”
J. Chem. Phys.
148
(
11
),
114901
(
2018
).
88.
V. S.
Rathee
et al, “
Role of associative charging in the entropy–energy balance of polyelectrolyte complexes
,”
J. Am. Chem. Soc.
140
(
45
),
15319
15328
(
2018
).
89.
A. M.
Rumyantsev
,
A. A.
Gavrilov
, and
E. Yu.
Kramarenko
, “
Electrostatically stabilized microphase separation in blends of oppositely charged polyelectrolytes
,”
Macromolecules
52
(
19
),
7167
7174
(
2019
).
90.
A.
Shakya
et al, “
Role of chain flexibility in asymmetric polyelectrolyte complexation in salt solutions
,”
Macromolecules
53
(
4
),
1258
1269
(
2020
).
91.
S. V.
Bobbili
and
S. T.
Milner
, “
Closed-loop phase behavior of nonstoichiometric coacervates in coarse-grained simulations
,”
Macromolecules
55
(
2
),
511
516
(
2022
).
92.
S.
Chen
,
P.
Zhang
, and
Z.-G.
Wang
, “
Complexation between oppositely charged polyelectrolytes in dilute solution: Effects of charge asymmetry
,”
Macromolecules
55
(
10
),
3898
3909
(
2022
).
93.
A. S.
Michaels
, “
Polyelectrolyte complexes
,”
Ind. Eng. Chem.
57
(
10
),
32
40
(
1965
).
94.
K.-I.
Tainaka
, “
Effect of counterions on complex coacervation
,”
Biopolymers
19
(
7
),
1289
1298
(
1980
).
95.
C.
Márquez-Beltrán
et al, “
Structure and mechanism formation of polyelectrolyte complex obtained from PSS/PAH system: Effect of molar mixing ratio, base–acid conditions, and ionic strength
,”
Colloid Polym. Sci.
291
(
3
),
683
690
(
2012
).
96.
M.
Muthukumar
, “
50th anniversary perspective: A perspective on polyelectrolyte solutions
,”
Macromolecules
50
(
24
),
9528
9560
(
2017
).
97.
M.
Muthukumar
,
Physics of Charged Macromolecules: Synthetic and Biological Systems
(
Cambridge University Press
,
2023
).
98.
S.
Liu
and
M.
Muthukumar
, “
Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains
,”
J. Chem. Phys.
116
(
22
),
9975
9982
(
2002
).
99.
M.
Muthukumar
, “
Theory of counter-ion condensation on flexible polyelectrolytes: Adsorption mechanism
,”
J. Chem. Phys.
120
(
19
),
9343
9350
(
2004
).
100.
S.
Ghosh
and
A.
Kundagrami
. “
Effect of counterion size on polyelectrolyte conformations and thermodynamics
,” arxiv.2310.11250 (
2023
)
101.
S. F.
Edwards
and
P.
Singh
, “
Size of a polymer molecule in solution. Part 1.—Excluded volume problem
,”
J. Chem. Soc., Faraday Trans.
75
,
1001
1019
(
1979
).
102.
P. J.
Flory
and
W. R.
Krigbaum
,“
Statistical mechanics of dilute polymer solutions
,”
J. Chem. Phys.
18
(
8
),
1086
1094
(
1950
).
103.
R.
Podgornik
, “
A variational approach to charged polymer chains: Polymer mediated interactions
,”
J. Chem. Phys.
99
(
9
),
7221
7231
(
1993
).
104.
M.
Muthukumar
, “
Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor
,”
J. Chem. Phys.
137
(
3
),
034902
(
2012
).
105.
N.
Laugel
et al, “
Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy
,”
J. Phys. Chem. B
110
(
39
),
19443
19449
(
2006
).
106.
E. L.
Mehler
and
G.
Eichele
, “
Electrostatic effects in water-accessible regions of proteins
,”
Biochemistry
23
(
17
),
3887
3891
(
1984
).
107.
G.
Lamm
and
G. R.
Pack
, “
Calculation of dielectric constants near polyelectrolytes in solution
,”
J. Phys. Chem. B
101
(
6
),
959
965
(
1997
).
108.
I.
Rouzina
and
V. A.
Bloomfield
, “
DNA bending by small, mobile multivalent cations
,”
Biophys. J.
74
(
6
),
3152
3164
(
1998
).
109.
M.
Dinpajooh
and
D. V.
Matyushov
, “
Dielectric constant of water in the interface
,”
J. Chem. Phys.
145
(
1
),
014504
(
2016
).
110.
B.
Roux
,
H. Ai.
Yu
, and
M.
Karplus
, “
Molecular basis for the Born model of ion solvation
,”
J. Phys. Chem.
94
(
11
),
4683
4688
(
1990
).
111.
S. W.
Rick
and
B. J.
Berne
, “
The aqueous solvation of water: A comparison of continuum methods with molecular dynamics
,”
J. Am. Chem. Soc.
116
(
9
),
3949
3954
(
1994
).
112.
R. M.
Lynden-Bell
and
J. C.
Rasaiah
, “
From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes
,”
J. Chem. Phys.
107
(
6
),
1981
1991
(
1997
).
113.
S.
Rajamani
,
T.
Ghosh
, and
S.
Garde
, “
Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior
,”
J. Chem. Phys.
120
(
9
),
4457
4466
(
2004
).
114.
R.
Kumar
,
B. G.
Sumpter
, and
S. M.
Kilbey
II
, “
Charge regulation and local dielectric function in planar polyelectrolyte brushes
,”
J. Chem. Phys.
136
(
23
),
234901
(
2012
).
115.
J.
Andrew Grant
,
B. T.
Pickup
, and
N.
Anthony
, “
A smooth permittivity function for Poisson–Boltzmann solvation methods
,”
J. Comput. Chem.
22
(
6
),
608
640
(
2001
).
You do not currently have access to this content.